198*199-200
196+197*198
So Sánh 196/197+197/198 và 198/199+199/197
196/197 + 197/198 > 198/199 + 199/197
(-200)+(-199)+(-198)+....+197+198+199
Bài này dễ lắm nè
\(\left(-200\right)+\left(-199\right)+\left(-198\right)+...+197+198+199\)
\(\Rightarrow\left(-200\right)+\left(-199+199\right)+\left(-198+198\right)+...+\left(-1+1\right)\)
\(\Rightarrow\left(-200\right)+0+0+...+0\)
\(\Rightarrow\left(-200\right)\)
=[(-199)+199]+[(-198)+198]+...[(-1)+1]+(-200)
=0+0+...+0+(-200)
=(-200)
198*199-200/196+197*198
198*199-200/196+197*198
198*199-200 phan 196+197*198
Tính A/B biết ; A=1/2+1/3+1/4+...+1/100 B= 1/199+2/198+3/197+...+197/3+198/2+199/1
Sửa đề \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\)
\(B=\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}\)
\(=\left(1+\frac{1}{199}\right)+\left(\frac{2}{198}+1\right)+\left(\frac{3}{197}+1\right)+...+\left(\frac{2}{198}+1\right)+1\)
\(=\frac{200}{200}+\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}\)
\(=200\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)\)
Khi đó A/B = \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{200\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)}=\frac{1}{200}\)
A=\(\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}\)
\(A=\frac{200}{199}+\frac{200}{198}+...+\frac{200}{2}+1\)
\(A=200\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)\)
D=\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{198}+\frac{1}{199}}{\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}}\)
\(D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{198}+\frac{1}{199}}{\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}}\)
\(D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{198}+\frac{1}{199}}{\left[\frac{1}{199}+1\right]+\left[\frac{2}{198}+1\right]+\left[\frac{3}{197}+1\right]+...+\left[\frac{198}{2}+1\right]}\)
\(D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{198}+\frac{1}{199}}{\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}}\)
\(D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{198}+\frac{1}{199}}{200\left[\frac{1}{199}+\frac{1}{198}+\frac{1}{197}+...+\frac{1}{2}\right]}=\frac{1}{200}\)
Tìm chữ số tận cùng của :
A = 195196 + 196197+ 197198 + 198199 + 199200