cho tam giac ABC co AB=3cm AC=5cm BC=4cm
chung to tam giac ABC vuong tai B
cho ABC co AB = 3cm; AC = 4cm; BC = 5cm a) chung to tam giac ABC vuong tai A b) ve phan giac BD ( D thuoc AC ), tu D ve DE vuong goc BC ( E thuoc BC ). Chung minh DA = DE c) ED cat AB tai F. Chung minh tan giac ADF = tam giac EDC roi suy ra DF > DE
Giup em voi
cho hinh tam giac ABC co goc dinh A la goc vuong ,AB=3cm ,AC =4cm ,BC=5cm .hay ve cac hinh vuong co canh lan luot la AB,AC, BC, o phia ngoai hinh tam giac ABC
Cho tam giác ABC có AB=ÁC=5cm,BC=8cm.AH vuông góc BC
a,C/m AH dong thoi la duong p/giac dg trung tuyen
b,Tinh do dai AH
c,Ke HD vuong goc AB[D thuoc AB]
Ke HE vuong goc AC[E thuoc AC]
C/m DE song song BC
Tam giac ABC co AB = 3cm,AC=4cm,BC=5cm.ch/m tam giac ABC vuong tai A
NHẬN XÉT
\(5^2=3^2+4^2\)
\(\Rightarrow BC^2=AB^2+AC^2\)
THEO ĐỊNH LÍ PY TA GO ĐẢO => \(\Delta ABC\\\)CÂN TẠI A
ta có:\(AB^2+AC^2=3^2+4^2=25=BC^2\)
áp dụng địch lí pitago đảo => \(\Delta ABC\)vuông tại A
chúc bạn học tốt
Cho tam giac ABC vuong tai A co AB=3cm;AC=6cm
a,tinh BC
b,Goi E la trung diem cua AC,phan giac cua goc A cat BC tai D.Chung minh tam giac ABD=tam giac AED
c,ED cat AB tai M.Chung minh tam giac BAC= tam giac EAM.Suy ra tam giac MAC vuong can
a)
\(BC^2=AC^2+AB^2=6^2+3^2=36+9=45\)
\(BC=\sqrt{45}\left(cm\right)\)
b)
ta có: AE=1/2 AC=6/2=3(cm)
xét tam giác AED và ABD có:
AE=AB=3cm
EAD=BAD(gt)
AD(chung)
=> tam giác AED=ABD(c.g.c)
c)
theo câu b, ta có tam giác AED=ABD(c.c.g)
=> AED=ABD
xét tam igasc BAC và tam giác EAM có :
DBA=AEB(cmt)
AB=AE
CAM(chung)
=> tam giác BAC=EAM(c.g.c)
=> AC=AM
có CAM=90
=> tam giác CAM vuông cân tại A
cho tam giac ABC co AB=3cm,AC=scm,BC=4cm
a) chứng tỏ tam giac ABC vuong taoi B
b) Ve tia phan giac AD(Dthuoc BC).tuD,ve DE vuong voi AC (E thuoc AC ). Chung minh DB=DE
c) ED cat AB tai F. chung minh tam giac BDF=tam giac EDC roi suy ra DF > DE.
d)chung minh AB+BC >DE +AC
Giải
a) Dùng định lí PYTHAGO đảo.
b) Chứng minh tam giác ADB=tam giác ADE
c) Sử dụng 2 góc đối đỉnh, cặp cạnh bằng nhau từ câu b để chứng minh 2 tam giác bằng nhau.
Chứng minh DF>BD mà BD=DE => DF>DE
d) Sử dụng khéo léo các đoạn thẳng lớn hơn nhau, các đoạn thẳng cọng lại với nhau ra đoạn chính.
Bài không khó, cố làm nhé. Câu cuối mình lười không viết, để bạn khác hd cũng được. Mình khuyến khích tự nghĩ
Cho tam giac ABC vuong tai B co AB =3cm;AC=5cm
a,Tinh BC
b,ve duong phan giac AD va ve DE vuong goc voi AC.Chung minh tam giac ABD= tam giac AED
c, Keo dai AB va ED cat nhau tai K.Chung minh tam giac KDC can
d, Tren tia doicua tia KE lay diem F sao cho KF=BC.Chung minh EB di qua trung diem cua AF
a) trong tam giác ABC vuông tại B có:
AB2 + AC2 = BC2
=> 32 + 52 = BC2
=> BC2 = 9 + 25
=> BC2 = 34 => BC = \(\sqrt{34}cm\)
b)
tự vẽ hình nha bạn
Xét tam giác ABD và tam giác AED có :
góc BAD = góc EAD (gt)
AD cạnh chung
góc B = góc C = 90 độ (gt)
suy ra : tam giác ABD = tam giác AED (cạnh huyền - góc nhọn )
c)
tam giác ABD = tam giác AED
suy ra :BD = ED (2 cạnh tương ứng )
xét tam giác DBK và tam giác DEC có :
BD = ED ( c/ m trên )
góc BDK = góc EDC ( đối đỉnh )
góc DBK = góc DEC ( gt )
suy ra : tam giác DBK = góc DEC ( g-c-g )
suy ra DK = DC ( 2 cạnh tương ứng )
hay tam giác KDC cân tại D
câu d mình chưa tính đc
cho tam giac ABC vuong tai a, co B=60 va AB=5cm .tia phan giac cua goc B cat AC tai D .Ke de vuong goc voi AC tai E
1/ chứng minh tam giác ABD= tam giác EBD
2/chung minh tam giac ABE la tam giac deu
3/tinh do dai canh BC
cho tam giac ABC can co AB = AC = 5cm ; BC = 8cm . Ke AB vuong goc voi BC tai H
a, chung minh HB = HC va gocBAH = gocCAH
b, tinh do dai AH
c, ke HD vuong goc voi AB tai D. HE vuong goc voi AC tai E
chung minh tam giac HDE la tam giac can
cho tam giac ABC co AB = 3cm AC = 4 cm , BC = 5 cm, phan giac BD chung minh
a Tam giac ABC vuong tai A
b Tu D ve DE vuong goc voi BC chung minh DA = DE
c ED cat AB tai F chung minh DF > DE