Chứng minh rằng \(\frac{1}{1001}+\frac{1}{1002}+...+\frac{1}{2000}<\frac{3}{4}\)
Cho S = \(\frac{-1}{1001}+\frac{-1}{1002}+\frac{-1}{1003}+...+\frac{-1}{2000}\)
Chứng tỏ rằng S<\(\frac{-7}{12}\)
Cho:
A=\(\frac{1}{1000}+\frac{1}{1001}+\frac{1}{1002}+...+\frac{1}{2000}\)
Chứng minh rằng\(\frac{1}{4}\)<A<\(\frac{1}{2}\)
Chứng minh rằng:
a) \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2008^2}<1\)
b) \(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2000}>\frac{13}{21}\)
Bạn đổi phân số thành / rồi tìm trên Google có đầy bài này rồi.
a, VT < 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/2007.2008
= 1-1/2+1/2-1/3+1/3-1/4+....+1/2007-1/2008 = 1-1/2008 < 1
=> ĐPCM
a) Ta có :1/22 + 1/32 + 1/42 + ... + 1/20082 < 1-1/2+1/2-1/3+...+1/2007-1/2008=1-1/2008<1
=> ĐPCM
Chứng minh rằng : \(\frac{1}{201}< \frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+\frac{1}{1004}+\frac{1}{1005}< \frac{1}{201}\)Ai giải nhanh mình tick nha
Chứng minh rằng :\(\frac{1}{1000}+\frac{1}{1001}+...+\frac{1}{2000}>\frac{1}{2}\)
\(\frac{1}{1000}+\frac{1}{1001}+...+\frac{1}{2000}>\frac{1}{2000}+\frac{1}{2000}+...+\frac{1}{2000}=\frac{1001}{2000}>\frac{1000}{2000}=\frac{1}{2}\)
Chứng tỏ:
\(\frac{1}{1001}\)+\(\frac{1}{1002}\)+\(\frac{1}{1003}\)+...+\(\frac{1}{2000}\)>\(\frac{13}{21}\)
CHỨNG MINH \(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{1500}>\frac{1}{3}\)
giúp mình với 1h mình hc r,cảm ơn nhaaaaaa
Ta có: 1/1500 = 1/1500
1/1001 > 1/1500
1/1002 > 1/1500
1/1003 > 1/1500 => 1/1001 + 1/1002 + 1/1003 + ... + 1/1499
. . . . . . . . . . . > 1/1500 + 1/1500 + 1/1500 + ... + 1/1500 (499 số hạng 1/1500)
1/1499 > 1/1500 > 499/1500
=> 1/1001 + 1/1002 + 1/1003 + ... + 1/1500 > 499/1500 + 1/1500 = 500/1500 = 1/3
Vậy 1/1001 + 1/1002 + 1/1003 + ... + 1/1500 > 1/3
k cho mình nha! Cảm ơn!
bạn có thể thêm dấu ngoặc vào sau chỗ:
1/1001 > 1/1500
1/1002 > 1/1500
1/1003 > 1/1500
. . . . . . . . . . . . .
1/1499 > 1/1500
Chứng minh rằng: \(\frac{1}{100}\)+\(\frac{1}{1001}\)+............+\(\frac{1}{2000}\)> \(\frac{1}{2}\)
1/1000 hay 1/100 vậy
Có 1/100>1/2000
1/1001>1/2000
........
1/1999>1/2000
1/2000=1/2000
=>1/100+1/1001+.....+1/2000>1/2000+1/2000+....+1/2000
=>1/100+1/1001+.....+1/2000 > 1001/2000
Do 1001/2000>1/2
=>1/100+1/1001+.....+1/2000>1/2
chứng minh : \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....-\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}=\frac{1}{1002}+.....+\frac{1}{2002}\)
\(1-\frac{1}{2}+\frac{1}{3}-...+\frac{1}{2001}-\frac{1}{2002}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2001}\right)\)\(-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2002}\right)\)
= \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2001}+\frac{1}{2002}\right)\)\(-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2002}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2002}\right)\)\(-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1001}\right)\)
\(=\frac{1}{1002}+\frac{1}{1003}+\frac{1}{1004}+...+\frac{1}{2002}\)