chứng minh rằng tích của 4 số tự nhiên liên tiếp thì chia hết cho 24
Chứng minh rằng : tích của 4 số tự nhiên liên tiếp thì chia hết cho 24
1/chứng minh rằng tích của 4 số tự nhiên liên tiếp thì chia hết cho 24.
2/chứng minh rằng tích của 3 số tự nhiên chẵn liên tiếp thì chia hết cho 48.
3/cho A ={ a,b,c }. tìm tất cả các tập hợp con của A.
1/ Bài giải
Tích của 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp.
Trong 2 số chẵn liên tiếp chắc chắn có 1 số chia hết cho 4=> số còn lại chia hết cho 2
=> Tích 4 số tự nhiên liên tiếp chia hết cho 8. ﴾1﴿
Trong 4 số tự nhiên liên tiếp chắc chẵn có 1 số chia hết cho 3 ﴾2﴿
Từ ﴾1﴿ và ﴾2﴿ => Tích 4 số tự nhiên liên tiếp chia hết cho 3 và 8.
Mà 3 và 8 nguyên tố cùng nhau => Tích 4 số tự nhiên liên tiếp chia hết cho 3.8
=>Tích 4 số tự nhiên liên tiếp chia hết cho 24
2/ Bài giải
Vì trong 4 số tự nhiên chẵn có ít nhất 1 số chia hết cho 4
Và 2 số còn lại chia hết cho 2
=> Chia hết cho 2 x 2 x 4 = 16
Mà trong 3 số đó phải có 1 số chia hết cho 3
= > Tích chia hết cho : 3 . 16 = 48
=> Tích của 3 số tự nhiên chẵn liên tiếp thì chia hết cho 48.
3/ Bài giải
‐ tập hợp con không chứa phần tử nào: tập rỗng => có 1 tập hợp
‐ tập hợp con có 1 phần tử là : {a}; {b}; {c} ; {d} => có 4 tập hợp
‐ tập hợp có 2 phần tử là: {a;b}; {a;c}; {a;d}; {b;c}; {b;d}; {c;d}; => có 6 tập hợp
‐ tập hợp có 3 phần tử là: {a;b;c}; {a;b;d} ; {a;c;d}; {b;c;d} => có 4 tập hợp
‐ tập hợp có 4 phần tử là chính A = {a;b;c;d} => có 1 tập hợp
Vậy có tất cả là 1 + 4 + 6 + 4 + 1 = 16 tập hợp
3/Các tập hợp con của A là :
{a},{b},{c}
{a;b},{a;c},{b;c}
{a;b;c}
k mình nha
Chứng tỏ rằnga) Tổng của 2 số lẻ liên tiếp thì chia hết cho 4.b) Tích của 2 số tự nhiên liên tiếp thì chia hết cho 2.c) Tích của 3 số tự nhiên liên tiếp thì chia hết cho 6.d) Tích của 4 số tự nhiên liên tiếp thì chia hết cho 24.e) Tích của 5 số tự nhiên liên tiếp thì chia hết cho 120.
ousbdl
jvdajnvjl
nsdg
ouhqer
kgkrebvjdsjb
vq
wjkgb
Fbovafbeuonasf
Chứng minh rằng :
a) Tích của 2 số chẵn liên tiếp thì chia hết cho 8.
b) n5- n chia hết cho 10 .
c) Tích của 4 số tự nhiên liên tiếp thì chia hết cho 24.
Chứng minh rằng tích của 6 số tự nhiên liên tiếp thì chia hết cho 24.
gọi số tự nhiên đó là a
ta có :
a(a+1)(a+2)(a+3)(a+4)(a+5)(a+6)
có 6 số tự nhiên liên tiếp thì chắc chắn sẽ có 3 hoặc 4 số tự nhiên chẵn
TH1: có 3 stn chẵn
có trong 3 stn chẵn liên tiếp chắc chắn sẽ có 1 số chia hết cho 4
trong 6 stn liên tiếp chắc chắn sẽ có 2 số chia hết cho 3
=> tích 6 stn liên tiếp chia hết cho 8 và 3
=>tích 6 stn liên tiếp chia hết cho 24
Chứng minh rằng: Tích của 4 số tự nhiên liên tiếp chia hết cho 24.
đơn giản trong 4 số tự nhiên liên tiếp thì có 2 số chia hết cho 2 mà 2so chia hết cho2la số chia hết cho4
gọi 4 số tự nhiên liên tiếp là n,n+1,n+2,n+3
Ta có n.(n+1).(n+2).(n+3) \(⋮\)3
Lại có n(n+1).(n+2).(n+3) chứa hai thừa số chẵn liên tiếp nên chia hết cho 8 mà ( 3,8 ) = 1
\(\Rightarrow\)n . ( n + 1 ) . ( n + 2 ) . ( n + 3 ) \(⋮\)24
chứng minh rằng tích của 4 số tự nhiên liên tiếp chia hết cho 24
Gọi 4 số tự nhiên liên tiếp là x;x+1,x+2,x+3
Ta có tích 4 số đó là x(x+1)(x+2)(x+3)
Vì x(x+1) là tích 2 số liên tiếp nên chia hết cho 2
x(x+1)(x+2) là tích 3 số liên tiếp nên chia hết cho 3
x(x+1)(x+2)(x+3) là tích 4 số liên tiếp nên chia hết cho 4
Mà 2.3.4=24
⇒x(x+1)(x+2)(x+3) là bội của 24 hay x(x+1)(x+2)(x+3) chia hết cho 24
Tích của 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp.
Trong 2 số chẵn liên tiếp chắc chắn có 1 số chia hết cho 4=> số còn lại chia hết cho 2
=> Tích 4 số tự nhiên liên tiếp chia hết cho 8. (1)
Trong 4 số tự nhiên liên tiếp chắc chẵn có 1 số chia hết cho 3 (2)
Từ (1) và (2) => Tích 4 số tự nhiên liên tiếp chia hết cho 3 và 8.
Mà 3 và 8 nguyên tố cùng nhau => Tích 4 số tự nhiên liên tiếp chia hết cho 3.8
=>Tích 4 số tự nhiên liên tiếp chia hết cho 24
Chứng minh rằng tích của 4 số tự nhiên liên tiếp chia hết cho 24
Tích của 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp.
Trong hai số chẵn liên tiếp chắc chắn có một số chia hết cho 4, số còn lại chia hết cho 2 bằng tích 4 số tự nhiên liên tiếp chia hết cho 8. ( 1)
Trong 4 số tự nhiên liên tiếp chắc chắn có một số chia hết cho 3. (2).
Từ (1) và (2) suy ra Tích 4 số tự nhiên liên tiếp chia hết cho 3 và 8
Mà 3 và 8 là hai số nguyên tố cùng nhau
suy ra tích 4 số tự nhiên liên tiếp chia hết cho 3 x 8 = 24
Vậy tích 4 số tự nhiên liên tiếp chia hết cho 24
4 số tự nhiên liên tiếp sẽ có 2 số chẵn, mà số chẵn chia hết cho 2 nên tích 2 số chẵn chia hết cho 4. Số chia hết cho 4 nhân với bất kì số tự nhiên lẻ nào cũng chia hết cho 4
Vậy 4 số tự nhiên liên tiếp đương nhiên chia hết cho 4
Chứng minh rằng : tích của 4 số tự nhiên liên tiếp chia hết cho 24
Tích của 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp. Trong 2 số chẵn liên tiếp chắc chắn có 1 số chia hết cho 4, số còn lại chia hết cho 2 = tích 4 số tự nhiên liên tiếp chia hết cho 8. (1)
Trong 4 số tự nhiên liên tiếp chắc chẵn có 1 số chia hết cho 3 (2)
Từ (1) và (2) => Tích 4 số tự nhiên liên tiếp chia hết cho 3 và 8.
Mà 3 và 8 nguyên tố cùng nhau => tích 4 số tự nhiên liên tiếp chia hết cho 24 ( = 8.3)
Bài này áp dụng tính chất: Nếu a chia hết cho b; a chia hết cho c và b và c nguyên tố cùng nhau
=> a chia hết cho (b.c)
+ 2 số nguyên tố cùng nhau là 2 số có ƯCLN là 1
Dạng của 4 số tự nhiên liên tiếp là :
a . ( a + 1 ) . ( a + 2 ) . ( a + 3 )
= 4a ( 1 + 2 + 3 )
= 4a . 6
= 24a
=> tích của 4 số tự nhiên liên tiếp chia hết cho 24