tìm 3 so tu nhiên a,b,c khác 0 sao cho 64a=80b=96c
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm 3 số tự nhiên a,b,c nhỏ nhất khác 0 sao cho 64a=80b=96c
80b có chữ số tận cùng là 0 => a và c phải có chữ số hàng đơn vị là 0 hoặc 5
\(64a=96b\Rightarrow\frac{a}{c}=\frac{96}{64}=\frac{3}{2}\Rightarrow a=30;c=20\)
\(\Rightarrow64a=80b\Rightarrow64.30=80b\Rightarrow b=24\)
tìm 3 số tự nhiên a,b,c nhỏ nhất khác 0 sao cho 64a =80b=96c
Giả sử 64a=80b=96c=3
=> m thuộc BC(64;80;96).Mà a,b,c nhỏ nhất khác 0
nên m thuộc BCNN(64;80;96).
BCNN(64;80;96)=26.3.5=960
=> 64a = 960 => a=15
80b = 960 => b = 12
96c = 960 => c = 10
Vậy a=15;b=12;c=10.
Tìm ba số tự nhiên a,b,c nhỏ nhất khác 0 sao cho 64a=80b=96c
Vì 64a=80b=96c
Suy ra:a,b,c thuộc BCNN(64,80,96)
Ta có :
64=2^6
80=2^4.5
96=2^5.3
Suy ra:BCNN(64,80,96)=2^6.3.5=960
Suy ra:
Stn(số tự nhiên) a là:
960:64=15
Stn(số tự nhiên) b là:
960:80=12
Stn(số tự nhiên) c là:
960:96=10
Vậy:
Stn a = 15
Stn b = 12
Stn c = 10
Đặt 64a = 80b = 96c = d.
Do ba số tự nhiên a, b, c nhỏ nhất khác 0 là số tự nhiên khác 0 nhỏ nhất chia hết cho a, b, c
=> d = BCNN (64, 80, 96).
Ta có: 64 = 26; 80 = 24.5; 96 = 25.3 d = 26.3.5 = 960
=> a = 960 : 64 = 15; b = 960 : 80 = 12; c = 960 : 96 = 10
tìm 3 số tự nhiên a,b,c nhỏ nhất sao cho 64a=80b=96c
Tim 3 so tu nhien a,b,c nho nhat khac 0 sao cho 64a=80b=96c
Chung to rang (7n+10)va (5n+7) la 2 so nguen to cung nhau (n thuoc N)
\(\text{Vì a,b,c là 3 số tự nhiên khác 0 và 64a = 80b = 96c }\)
\(\text{Do đó , a,b,c }\in BC(64,80,96)\)
Ta có :
64 = 26
80 = 24 . 5
96 = 25 . 3
=> BCNN\((64,80,96)=2^6\cdot5\cdot3=960\)
\(\Rightarrow\hept{\begin{cases}a=960\div64\\b=960\div80\\c=960\div96\end{cases}}\Rightarrow\hept{\begin{cases}a=15\\b=12\\c=10\end{cases}}\)
Vậy 3 số tự nhiên a,b,c nhỏ nhất khác 0 lần lượt 15,12,10
\(\text{Gọi d}\inƯC(7n+10,5n+7)\)
\(\text{Ta có :}\hept{\begin{cases}7n+10=5(7n+10)\\5n+7=7(5n+7)\end{cases}}\Rightarrow\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}\)
\((35n+50)-(35n+49)⋮d\)
\(1⋮d\Rightarrow d=1\)
Vậy 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau
a) Tìm ba số tự nhiên a, b, c nhỏ nhất khác 0 sao cho 64a = 80b = 96c.
b) Chứng tỏ rằng: (7n+10)và (5n+7) là hai số nguyên tố cùng nhau (n thuộc N).
a) \(64a=80b=96c\)
\(\Leftrightarrow4a=5b=6c\) (Chia các vế cho 16)
Đặt \(m=4a=5b=6c\) thì m là số tự nhiên và m chia hết cho 4, 5, 6. Để a, b, c nhỏ nhất thì m cũng nhỏ nhất.
=> m là BCNN(4;5;6)
\(4=2^2\)
\(5=5\)
\(6=2.3\)
=> \(BCNN\left(4;5;6\right)=2^2.3.5=60\)
=> m = 60 = 4a = 5b = 6c
=> a = 15
b = 12
c = 10
b) Gọi d = ƯC(7n + 10, 5n +7)
=> 7n + 10 chia hết cho d
5n + 7 chia hết cho d
=> 5(7n +10) - 7(5n + 7) chia hết cho d
=> 35n + 50 - 35n - 49 chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 7n + 10 và 5n + 7 là nguyên tố cùng nhau.
Gọi d=UCLN(7n+10,5n+7)(d thuộc N*)
Tìm d (Cm d=1)
1.Tìm ba số tự nhiên a,b,c nhỏ nhất khác 0 sao cho 64a=80b=96c
2.Tìm hai số tự nhiên x,y biết
x+y=19(x,y là số nguyên tố)
xy+3x+y=4
1.64a=80b=96c=>\(\frac{64a}{960}=\frac{80b}{960}=\frac{96c}{960}\)
=>\(\frac{a}{15}=\frac{b}{12}=\frac{c}{10}\)
......ko biết
2.Có:xy+3x+y=4
=>x(y+3)+y=4
=>x(y+3)+(y+3)=4+3=7
=>(x+1)(y+3)=7=>x+1 và y+3 thuộc Ư(7)
x+1 | -1 | -7 | 1 | 7 |
y+3 | -7 | -1 | 7 | 1 |
x | -2 | -8 | 0 | 6 |
y | -10 | -4 | 4 | -2 |
Với các cặp số(x;y) trên ko có số nào thỏa mãn x+y=19
Ta có: 64=2.2.2.2.2.2
80=2.2.2.2.5
96=2.2.2.2.2.3
=>BCLN(64,80,96)=2.2.2.2.2.2.3.5=960
Vì a,b,c nhỏ nhất nên 64a=80b=96c
=>a=960:64=15
b=960:80=12
c=960:96=10
Vậy a=15 ; b=12 ; c=10
Thay BCLN thành BCNN
Cau 9 :
a) Tim ba so tu nhien a , b , c khac 0 sao cho cac tich 140a , 180b , 200c bang nhau va co gia tri nho nhat .
b) Tim ba so tu nhien a , b , c nho nhat va khac 0 sao cho 64a = 80b = 96c .
GIUP MINH NHA ! AI NHANH MINH K !