Những câu hỏi liên quan
TS
Xem chi tiết
TS
Xem chi tiết
H24
Xem chi tiết
H24
13 tháng 4 2016 lúc 20:05

Tính A

\(A=2\frac{2}{35}^3-\frac{2^3}{63}-\frac{2}{99}^3-\frac{2}{143}^3-\frac{2}{195}^3-\frac{2}{255}^3-\frac{2}{323}^3\)

giải cả bài nha

Bình luận (0)
H24
Xem chi tiết
TS
Xem chi tiết
H24
Xem chi tiết
TS
Xem chi tiết
H24
13 tháng 4 2016 lúc 12:12

\(A=2-\left(\frac{2^3}{25}+\frac{2^3}{63}+...+\frac{2^3}{255}+\frac{2^3}{323}\right)\)

\(=2-4.\left(\frac{2}{35}+\frac{2}{63}+...+\frac{2}{255}+\frac{2}{323}\right)\)

\(=2-4.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{15.17}+\frac{2}{17.19}\right)\)

\(=2-4.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{15}-\frac{1}{17}+\frac{1}{17}-\frac{1}{19}\right)\)

\(=2-4.\left(\frac{1}{5}-\frac{1}{19}\right)\)

\(=2-4.\frac{14}{95}=2-\frac{56}{95}=\frac{134}{95}\)

 

Bình luận (0)
NN
Xem chi tiết
DT
19 tháng 6 2017 lúc 4:22

\(A=\frac{2}{3}+\frac{2}{15}+...+\frac{2}{143}\)

\(A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{11\cdot13}\)

\(A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\)

\(A=1-\frac{1}{13}=\frac{12}{13}\)

Bình luận (0)
H24
19 tháng 6 2017 lúc 4:57

   \(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\)

\(=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\)

\(=1-\frac{1}{13}\)

\(=\frac{12}{13}\)

Bình luận (0)
ML
19 tháng 6 2017 lúc 6:00

\(\frac{2}{6}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\)

\(=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\)

\(=1-\frac{1}{13}\)

\(=\frac{12}{13}\)

Bình luận (0)
LT
Xem chi tiết
H24
25 tháng 7 2018 lúc 20:02

\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)

\(=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{13\cdot15}\)

\(=\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{13\cdot15}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{15}\right)\)

\(=\frac{1}{2}\cdot\frac{14}{15}\)

\(=\frac{7}{15}\)

Bình luận (0)
KS
25 tháng 7 2018 lúc 20:08

Sửa đề chút nhé:

\(\left(1+3+5+7+...+2009+2011\right).\left(125125.127-127127.125\right)\)

\(=\left(1+3+5+7+...+2009+2011\right).\left(125.1001.127-127.1001.125\right)\)

\(=\left(1+3+5+7+...+2009+2011\right).0\)

\(=0\)

Ý b tham khảo bài bạn nguyen thi thuy linh nhé

Bình luận (0)
H24
25 tháng 7 2018 lúc 20:33

\(\text{Tính nhanh : }\)

\(a,\text{ }1+3+5+7+9+\text{...}+2007+2009+2011\cdot\left(125125\cdot127+127127\cdot125\right)\)

\(=\left\{\left(2009-1\right)\text{ : }2+1\right\}\cdot\left(2009+1\right)\text{ : }2+2011\cdot\left(125125\cdot127+127127\cdot125\right)\)

\(=1005\cdot2010\text{ : }2+2011\cdot\left(125125\cdot127+127127\cdot125\right)\)

\(=2020050\text{ : }2+2011\cdot\left(125125\cdot127+127127\cdot125\right)\)

\(=1010025+2011\cdot\left(125125\cdot127+127127\cdot125\right)\)

\(=1010025+2011\cdot\left(15890875+15890875\right)\)

\(=1010025+2011\cdot15890875\cdot2\)

\(=1010025+31956549625\cdot2\)

\(=1010025+63913099250\)

\(=63914109275\)

\(b,\text{ }\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)

\(=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+\frac{1}{11\cdot13}+\frac{1}{13\cdot15}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{13}-\frac{1}{15}\)

\(=1-\frac{1}{15}\)

\(=\frac{14}{15}\)

Bình luận (0)