Những câu hỏi liên quan
VD
Xem chi tiết
NV
1 tháng 3 2023 lúc 12:56

Tham khảo :loading...

Bình luận (1)
NN
1 tháng 3 2023 lúc 15:27

\(17A=\dfrac{17^{19}+17}{17^{19}+1}=\dfrac{\left(17^{19}+1\right)+16}{17^{19}+1}=\dfrac{17^{19}+1}{17^{19}+1}+\dfrac{16}{17^{19}+1}=1+\dfrac{16}{17^{19}+1}\)

\(17B=\dfrac{17^{18}+17}{17^{18}+1}=\dfrac{\left(17^{18}+1\right)+16}{17^{18}+1}=\dfrac{17^{18}+1}{17^{18}+1}+\dfrac{16}{17^{18}+1}=1+\dfrac{16}{17^{18}+1}\)

Vì \(17^{19}>17^{18}=>17^{19}+1>17^{18}+1\)

\(=>\dfrac{16}{17^{19}+1}< \dfrac{16}{17^{18}+1}\)

\(=>17A< 17B=>A< B\)

Bình luận (0)
DD
Xem chi tiết
NT
24 tháng 3 2017 lúc 22:28

Nếu nghĩ kĩ thì thấy bài này cũng đơn giản thôi.Thử xem cách giải của mk nè:

Giải: Ta có: A=\(\frac{17^{18}+1}{17^{19}+1}\)                                                        B=\(\frac{17^{17}+1}{17^{18}+1}\)

               17A=\(\frac{17^{19}+17}{17^{19}+1}\)                                                 17B=\(\frac{17^{18}+17}{17^{18}+1}\)

                                                                                               

             17A=\(\frac{\left(17^{19}+1\right)+16}{17^{19}+1}\)                                       17B=\(\frac{\left(17^{18}+1\right)+16}{17^{18}+1}\)

               17A=\(\frac{17^{19}+1}{17^{19}+1}+\frac{16}{17^{19}+1}\)                             17B=\(\frac{17^{18}+1}{17^{18}+1}+\frac{16}{17^{18}+1}\)

               17A=\(1+\frac{16}{17^{19}+1}\)                                            17B= \(1+\frac{16}{17^{18}+1}\)

 Lại có: 1719+1>1718+1

 Suy ra:\(\frac{16}{17^{19}+1}< \frac{16}{17^{18}+1}\)

             17A<17B

             A<B

Vậy A<B

Bình luận (0)

\(\text{Ta có:}\frac{17^{18}+1}{17^{19}+1}\)

\(\Rightarrow17A=\frac{17^{19}+1+16}{17^{19}+1}\)

\(\Rightarrow17A=1+\frac{16}{17^{19}+1}\)

\(B=\frac{17^{17}+1}{17^{18}+1}\)

\(\Rightarrow17B=\frac{17^{18}+1+16}{17^{18}+1}\)

\(\Rightarrow17B=1+\frac{16}{17^{18}+1}\)

\(\text{Vì }\frac{16}{17^{19}+1}< \frac{16}{17^{18}+1}\)

\(\Rightarrow17A< 17B\)

\(\Rightarrow A< B\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
BN
20 tháng 5 2018 lúc 9:58

Ta có công thức :

\(\frac{a}{b}< \frac{a+c}{b+c}\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(A=\frac{17^{18}+1}{17^{19}+1}< \frac{17^{18}+1+16}{17^{19}+1+16}\)

\(=\frac{17^{18}+17}{17^{19}+17}\)

\(=\frac{17\left(17^{17}+1\right)}{17\left(17^{18}+1\right)}\)

\(\Leftrightarrow\frac{17^{17}+1}{17^{18}+1}\)'

\(\Rightarrow=B\)

Vậy \(A< B\)

Bình luận (0)
PH
Xem chi tiết

bn viết thế khó hiểu lắm

Bình luận (0)

viết lại đi mik giải cho

Bình luận (0)
KN
31 tháng 3 2019 lúc 17:01

\(A=\frac{17^{18}+1}{17^{19}+1}\)

\(\Leftrightarrow17A=\frac{17^{19}+17}{17^{19}+1}\)

\(\Leftrightarrow17A=\frac{17^{19}+1+16}{17^{19}+1}\)

\(\Leftrightarrow17A=\frac{17^{19}+1}{17^{19}+1}+\frac{16}{17^{19}+1}\)

\(\Leftrightarrow17A=1+\frac{16}{17^{19}+1}\)

\(B=\frac{17^{17}+1}{17^{18}+1}\)

\(\Leftrightarrow17B=\frac{17^{18}+17}{17^{18}+1}\)

\(\Leftrightarrow17B=\frac{17^{18}+1+16}{17^{18}+1}\)

\(\Leftrightarrow17B=\frac{17^{18}+1}{17^{18}+1}+\frac{16}{17^{18}+1}\)

\(\Leftrightarrow17B=1+\frac{16}{17^{18}+1}\)

Vì \(1+\frac{16}{17^{18}+1}>1+\frac{16}{17^{19}+1}\) nên 17B > 17A

Suy ra B > A

Bình luận (0)
NA
Xem chi tiết
ND
11 tháng 5 2015 lúc 19:34

 

Ta có: \(A=\frac{17^{18}+1}{17^{19}+1}

Bình luận (0)
PA
7 tháng 2 2018 lúc 20:00

Để so sánh A =1718+1/1719+1 và B=1717+1/1718+1

=>Ta xét bài toán phụ sau

a/b<1 thì a/b<a+/b+m

vì a/b<1=>a<b mà m thuộc N*

=>a.m<b.m=>ab+am<ab+bm

a/b=a.(b+m0/b.(b+m)/b(b+m=ab+am/b(b+m)<ab+bm/b(b+m)

Vì b(b+m)>0=>a/b<ab+bm/b(b+m)=b(a+m)/b(b+m)=a+m/b+m

=>.a/b<a+m/b+m(1)

vì 1718+ 1 < 1719+1

=>A<1

(1)=>1718+1/1719+1<1718+1+16/1719+1+16

<=>A<1717+17/1719+17=17(1717+1)/1791718+1)

<=>A<1717+1/1718+1=B

<=>A<B

Vậy...

Bình luận (0)
H24
26 tháng 4 2018 lúc 15:51

các bạn làm đúng hết r

Bình luận (0)
NA
Xem chi tiết
H24
2 tháng 4 2015 lúc 7:58

1) Phân tích A ra :

 A= 1717.17+$\frac{1}{17^{18}.17}$1‍1718.17 +1 So sánh với B ta có: A có 1718>1717 của B nhưng B lại có 1/1718>1/1719.

Mà 1718>1/1718 nên suy ra A>B

Bình luận (0)
NH
Xem chi tiết
RT
16 tháng 2 2016 lúc 17:48

hai phân số bằng nhau

Bình luận (0)
H24
Xem chi tiết
KN
9 tháng 3 2019 lúc 20:15

                            Giải

\(A=\frac{17^{18}+1}{17^{19}+1}\Leftrightarrow17A=\frac{17\left(17^{18}+1\right)}{17^{19}+1}\)

\(\Leftrightarrow17A=\frac{17^{19}+17}{17^{19}+1}\)

\(\Leftrightarrow17A=\frac{17^{19}+1+16}{17^{19}+1}\)

\(\Leftrightarrow17A=\frac{17^{19}+1}{17^{19}+1}+\frac{16}{17^{19}+1}\)

\(\Leftrightarrow17A=1+\frac{16}{17^{19}+1}\left(1\right)\)

\(B=\frac{17^{17}+1}{17^{18}+1}\Leftrightarrow17B=\frac{17\left(17^{17}+1\right)}{17^{18}+1}\)

\(\Leftrightarrow17B=\frac{17^{18}+17}{17^{18}+1}\)

\(\Leftrightarrow17B=\frac{17^{18}+1+16}{17^{18}+1}\)

\(\Leftrightarrow17B=\frac{17^{18}+1}{17^{18}+1}+\frac{16}{17^{18}+1}\)

\(\Leftrightarrow17B=1+\frac{16}{17^{18}+1}\left(2\right)\)

Từ (1) và (2) suy ra 17A < 17B

Suy ra A < B

Bình luận (0)
NH
Xem chi tiết
NH
18 tháng 3 2018 lúc 15:40

Ta có:

\(A=\frac{17^{18}+1}{17^{19}+1}\)

\(17A=\frac{17\left(17^{18}+1\right)}{17^{19}+1}=\frac{17^{19}+17}{17^{19}+1}\)

\(17A=\frac{(17^{19}+1)+16}{(17^{19}+1)}=1+\frac{16}{17^{19}+1}\)          (1)

\(B=\frac{17^{17}+1}{17^{18}+1}\)

\(17B=\frac{17\left(17^{17}+1\right)}{17^{18}+1}=\frac{17^{18}+17}{17^{18}+1}\)

\(17B=\frac{(17^{18}+1)+16}{(17^{18}+1)}=1+\frac{16}{17^{18}+1}\)          (2)

Từ (1) và (2) => \(1+\frac{16}{17^{19}+1}< 1+\frac{16}{17^{18}+1}\)

=>\(17A< 17B\)

Hay \(A< B\)

Vậy \(A< B\)

Bình luận (0)
PQ
16 tháng 3 2018 lúc 20:45

Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(A=\frac{17^{18}+1}{17^{19}+1}< \frac{17^{18}+1+16}{17^{19}+1+16}=\frac{17^{18}+17}{17^{19}+17}=\frac{17\left(17^{17}+1\right)}{17\left(17^{18}+1\right)}=\frac{17^{17}+1}{17^{18}+1}=B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

Bình luận (0)
TA
16 tháng 3 2018 lúc 20:49

 Ta co
A=17.17^17+1/17.17^18+1
   =1+(17^17+1/17^18+1)
Vi B=17^17+1/17^18+1
=>.B<A
 
chuan lun

Bình luận (0)