Những câu hỏi liên quan
NT
Xem chi tiết
VD
Xem chi tiết

cmr [7+1].[7+2] chia hết cho 3

=8x9

=72

72 chia hết cho 3

ĐCPCM

   Ta có chú ý chẵn cộng chẵn bằng chẵn

                        lẻ cộng chẵn bằng lẻ

                        lẻ cộng lẻ là chẵn

mà ta thấy \(3^{100}\) và\(19^{990}\)là lẻ mà lẻ cộng lẻ bằng chẵn 

=> mà số chẵn chia hết cho 2

ĐCPCM

3S=3+3^2+3^3+...+3^{31}

3S-S=3^{31}-1

2S=3^{4.7+3}-1

2S=81^7.27-1

2S=\overline{......1}.27-1

2S=\overline{......7}-1=\overline{......6}

S=\overline{........3}

Vậy chữ số tận cùng của S là 3=> S không phải là số chính phương

Bình luận (0)
 Khách vãng lai đã xóa
H24
27 tháng 11 2019 lúc 19:54

1) CMR: (7+1)(7+2)\(⋮\)3

\(\left(7+1\right)\left(7+2\right)=8\cdot9⋮3\left(đpcm\right)\)

2) CMR: \(3^{100}+19^{990}⋮2\)

ta có: \(3^{100}\)có chữ số tận cùng là số lẻ

\(19^{990}\)có chữ số tận cùng là số lẻ

mà lẻ + lẻ = chẵn => đpcm

3) abcabc có ít nhất 3 ước số nguyên tố

ta có: abcabc = abc x 1001 = abc x 11 x 7 x 13

Vậy...

4) Cho \(M=1+3^1+3^2+...+3^{30}\)

Tìm chữ số tận cùng của M. Từ đó suy ra M có phải số chính phương không?

ta có: \(M=1+3^1+3^2+...+3^{30}\)(1)

\(\Rightarrow3M=3+3^2+3^3+...+3^{31}\)(2)

(2) - (1) \(\Leftrightarrow3M-M=\left(3+3^2+3^3+...+3^{31}\right)-\left(1+3^1+3^2+...+3^{30}\right)\)

\(\Leftrightarrow2M=3^{31}-1\)

ta có: \(3^{31}=3^{28}\cdot3^3=\left(3^4\right)^7\cdot27=\left(...1\right).27=...7\Rightarrow2M=...7-1=...6\)

\(\Rightarrow\orbr{\begin{cases}M=...3\\M=...8\end{cases}}\)mà số chính phương không có tận cùng là 3, 8

=>đpcm

Học tốt nhé ^3^

Bình luận (0)
 Khách vãng lai đã xóa
VA
Xem chi tiết
PC
Xem chi tiết
H24
12 tháng 12 2023 lúc 22:57

co cai nit tu di ma tinh

 

Bình luận (0)
NT
Xem chi tiết
HH
Xem chi tiết
PC
30 tháng 12 2018 lúc 14:36

bài 1 

a)Số tận cùng là 6 nha

Bình luận (0)
HT
Xem chi tiết
NC
Xem chi tiết
HA
29 tháng 9 2024 lúc 18:20

.................

 

Bình luận (0)
CC
Xem chi tiết