Những câu hỏi liên quan
H24
Xem chi tiết
TL
8 tháng 5 2015 lúc 12:55

\(VT=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(VT=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(VT=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}+\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(VT=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}+\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(VT=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=VP\)=> ĐPCM

Bình luận (0)
TL
8 tháng 5 2015 lúc 13:06

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\left(\text{đ}pcm\right)\)

Bình luận (0)
LH
9 tháng 12 2016 lúc 16:16

mình ko hiểu cánh làm của các bạn

ghi thật chi tiết cho mình hiểu được ko

Bình luận (0)
VM
Xem chi tiết
VM
26 tháng 2 2016 lúc 15:25

Làm ơn giải giúp mình nhanh nhanh nhé, mình đang cần gấp, ai giải được mình k cho

Bình luận (0)
DL
28 tháng 2 2016 lúc 21:03

chứng minh cái gì bạn

Bình luận (0)
DL
28 tháng 2 2016 lúc 21:05

sory nhin nham mik rõ đầu bài rồi để mik giải cho

Bình luận (0)
LD
Xem chi tiết
SN
2 tháng 4 2015 lúc 11:04

1/101+1/102+..+1/200=(1+1/2+1/3+...+1/100)+1/101+1/102+1/103+...+1/200-(1+1/2+1/3+...+1/100)

=(1/2+1/4+1/6+...+1/200)+(1+1/3+1/5+...+1/199)-2(1/2+1/4+1/6+...+1/200)

=(1+1/3+1/5+...+1/199)-(1/2+1/4+1/6+...+1/200)

=1-1/2+1/3-1/4+1/5-1/6+...+1/199-1/200

suy ra ĐPCM

Bình luận (0)
VC
20 tháng 4 2016 lúc 13:18

nguyen thieu cong thanh ơi cho mình hỏi:

sao lại là :2(1/2+1/4+1/6+...+1/200)

phải là : (1/2+1/4+1/6+...+1/200) chứ

đúng hok?????

Bình luận (0)
LH
9 tháng 12 2016 lúc 16:18

sao co 2 o dau ra vậy

Bình luận (0)
DB
Xem chi tiết
AH
19 tháng 10 2024 lúc 16:33

Lời giải:

$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}$

$=(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199})-(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200})$

$=(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+>..+\frac{1}{199}+\frac{1}{200})-2(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200})$

$=(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{199}+\frac{1}{200})-(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100})$

$=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}$

Bình luận (0)
OH
Xem chi tiết
QD
6 tháng 3 2016 lúc 9:55

cái này dễ lắm chỉ là chưa để ý thôi:

a,1/101>1/102>...>1/199>1/200

=>1/101+1/102+...+1/199+1/200<100*1/101=100/101<1

các phần khác làm tương tự

đánh mỏi tay quá duyệt luôn đi

Bình luận (0)
H24
16 tháng 3 2019 lúc 12:18

cái này ở trong học tốt toán 6 đúng không

Bình luận (0)
DB
Xem chi tiết
ND
Xem chi tiết
ND
Xem chi tiết
QN
Xem chi tiết
TD
21 tháng 4 2016 lúc 20:21

Đang ko biết làm thế nào đây

Bình luận (0)
NT
8 tháng 11 2016 lúc 20:25

bài này không thể làm được vì hai vế không bằng nhau :D. Tác giả nên xem lại đề bài\(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-...+\frac{1}{99}=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}+\frac{1}{200}\)

Bên trái là  tổng xích ma  \(\left(-1\right)^{x+1}.\frac{1}{x}\)với x chạy từ 1 đến 99

Bên phải là tổng xích ma \(\frac{1}{x}\)với x chạy từ 101 tới 200

dùng máy tính casio fx bấm 2 tổng thấy 2 kết quả lệch ngay từ số thập phân thứ ba

Bình luận (0)
NT
22 tháng 11 2016 lúc 22:42

nếu là thế này thì mới làm được

\(1-\frac{1}{2}+\frac{1}{3}-...+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}+\frac{1}{200}\)

ta làm như sau: Biến đổi vế trái ta có

\(VT=\frac{1}{1}+\frac{1}{3}+...+\frac{1}{199}+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)\(-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...\frac{1}{100}+\frac{1}{101}+...+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}\)

=\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}+\frac{1}{200}=VP\)

=

Bình luận (0)