Cho A =\(\frac{2008\cdot2010+477}{2009\cdot2009+476}\)
Hãy so sánh A với 1 .
So sánh A và B
a)\(A=\frac{2008\cdot2009-1}{2008\cdot2009}\) và \(B=\frac{2009\cdot2010-1}{2009\cdot2010}\)
b)\(A=\frac{5^{10}+1}{5^{11}+1}\) và \(B=\frac{5^{11}+1}{5^{12}+1}\)
a) \(A=1-\frac{1}{2008.2009}\) ; \(B=1-\frac{1}{2009.2010}\)
Vì \(\frac{1}{2008.2009}>\frac{1}{2009.2010}\) nên A < B
Olm chọn đi để em còn làm tiếp câu b)
So sánh phân số
A/ \(\frac{2009}{2010}\)và\(\frac{2010}{2011}\)
B/ \(\frac{1}{3^{400}}\) và \(\frac{1}{4^{300}}\)
C/\(\frac{200}{201}+\frac{201}{202}và\frac{200+201}{201+202}\)
D/\(\frac{2008}{2008\cdot2009}và\frac{2009}{2009\cdot2010}\)
mik làm câu A thôi nha
ta có :
1 - 2009/2010 = 1/2010
1 - 2010/2011 = 1/2011
Phần bù nào bé thì phân số đó lớn .
Vì 1/2010 > 1/2011
Nên 2009/2010 > 2010/2011
Ta thấy hiệu giữa mẫu số và tử số của hai phân số bằng nhau ( = 1 )
Để so sánh hai phân số, ta so sánh các hiệu.
\(1-\frac{2009}{2010}\)và \(1-\frac{2010}{2011}\)
Ta có :
\(1-\frac{2009}{2010}=\frac{2010}{2010}-\frac{2009}{2010}=\frac{1}{2010}\)
\(1-\frac{2010}{2011}=\frac{2011}{2011}-\frac{2010}{2011}=\frac{1}{2011}\)
Ta thấy :
\(\frac{1}{2010}>\frac{1}{2011}\)
Hay :
\(1-\frac{2009}{2010}>1-\frac{2010}{2011}\)
Vậy \(\frac{2009}{2010}< \frac{2010}{2011}\)
Tính nhanh:
\(\frac{2008\cdot2009+2000}{2009\cdot2010-2018}\)
\(\frac{2008.2009+2000}{2009.2010-2018}\)
\(=\frac{2008.\left(2010-1\right)+2010}{\left(2008+1\right).2010-2018}\)
\(=\frac{2008.2010-2008+2010}{2008.2010+2010-2018}\)
\(=\frac{2008.2010+2}{2008.2010-18}\)
Mình nghĩ bài này sai đề, nếu đề là 2018 -> 2008 thì bảo mình, mình làm lại cho
2018-10+2010 -10/2010-2018=10+10 =20
h tui nhé
So sánh A và B :
A=\(\frac{2009\cdot2009+2008}{2009\cdot2009+2009}\)
B =\(\frac{2009\cdot2009+2009}{2009\cdot2009+2010}\)
giúp mk nhe ai xong đầu tiên mk tick giải rõ ràng mk cần gấp chiều mai mk đi học rồi
Ta có : \(A=\frac{2009.2009+2008}{2009.2009+2009}\)
\(=1-\frac{1}{2009.2009+2009}\)
\(B=\frac{2009.2009+2009}{2009.2009+2010}\)
\(=1-\frac{1}{2009.2009.2010}\)
Mà \(-\frac{1}{2009.2009+2009}< -\frac{1}{2009.2009.2010}\)
=> \(\frac{2009.2009+2008}{2009.2009+2009}< \frac{2009.2009+2009}{2009.2009.2010}\) => A < B
Cho P=\(\frac{a^2-\sqrt{a}}{a+\sqrt{a}+1}-\frac{a+\sqrt{a}}{\sqrt{a}}+\frac{a-4}{\sqrt{a}+2}\)
Tính giá trị của biểu thức P khi a = \(\frac{2009\cdot2010\cdot2011\cdot2012}{\left(2008\cdot2012-2006\right)\cdot\left(2008\cdot2003+12\cdot2009\right)}\)
Làm giúp mik với, mik đang cần gấp
Ai đi qua đọc mà k nghĩ là "chó"
Mik đùa tí thôi làm giúp đi.
Tính \(\frac{B}{A}\)biết
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{n\left(n+1\right)}+...+\frac{1}{2008\cdot2009}\)
\(B=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}+...+\frac{1}{2008\cdot2009\cdot2010}\)
Ta có
\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\) và \(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n}-\frac{1}{n+1}-\frac{1}{n+2}\) nên
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{n\left(n+1\right)}+...+\frac{1}{2008\cdot2009}=1-\frac{1}{2009}=\frac{2008}{2009}\)
\(2B=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}+...+\frac{2}{2008\cdot2009\cdot2010}\)
\(=\frac{1}{1\cdot2}-\frac{1}{2009\cdot2010}=\frac{201944}{2009\cdot2010}\)
\(\Rightarrow B=\frac{1}{2}\cdot\frac{201944}{2009\cdot2010}=\frac{1009522}{2009\cdot2010}\)
Do đó \(\frac{B}{A}=\frac{1009522}{2009\cdot2010}:\frac{2008}{2009}=\frac{1009522\cdot2009}{2008\cdot2009\cdot2010}=\frac{5047611}{2018040}\)
Cho biểu thức \(C=\frac{1}{\sqrt{1\cdot2010}}+\frac{1}{\sqrt{2\cdot2009}}+\frac{1}{\sqrt{3\cdot2008}}+...+\frac{1}{\sqrt{2010\cdot1}}\)
So sánh C với \(D=2\cdot\frac{2010}{2011}\)
(1 +2010) > 2\(\sqrt{1.2010}\)=> \(\frac{1}{\sqrt{1.2010}}\)> 2/2011 tương tự các phần tử còn lại
vậy C > 2/2011+2/2011+.....2/2011 = 2.2010/2011
\(\frac{2009\cdot2010-1000}{2011\cdot2009-1009}\)
= 2009 * ( 2011 - 1 ) - 1000 / 2011 * 2009 - 1009
= 2009 * 2011 - 2009 -1000 / 2011 * 2009 - 1009
= 2009 * 2011 - 1009 / 2011 * 2009 - 1009
= 1
Tính bằng cách thuận tiện:
\(\frac{2007\cdot2010-1007}{2008\cdot2009-1009}\)
\(=\frac{2007.2009+2007-1007}{2007.2009+2009-1009}\)
\(=\frac{2007.2009+1000}{2007.2009+1000}\)
=1