Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
PD
Xem chi tiết
NK
28 tháng 12 2015 lúc 22:06

ta có

2945 đồng dư 2(mod 9)

=>2945^2 đồng dư 32(mod 9)

Hay 2945^5 đồng dư 5(mod 9)

=>2945^5 - 3 đồng dư 2(mod 9)

Nếu bài làm của mình đúng thì tick nha bạn,cảm ơn nhiều.

 

Bình luận (0)
ND
Xem chi tiết
NT
Xem chi tiết
NK
Xem chi tiết
H24
20 tháng 3 2017 lúc 10:12

cách khác:

3^0 : 13 dư 1

3^1:13 dư 3

3^2: 13 dư 9

3^3: 13 dư 1

3^4: 13 dư 3

3^5: 13 dư 9

3^6: 13 dư 1

3^7:13 dư 3

....

3^n: 13 dư ?

....để ý quy luật : số dư (1,3,9) nếu tính n từ 0

 hoặc (3,9,1) nếu tính n từ 1

--> quy luận số mũ:

1: chia 3 dư 1 Ứng với  (3)

2: chia 3 dư 2 Ứng với (9)

3: chia 3 dư 0  Ứng với (1)

...........

100 chia 3 dư 1 --> Ứng với (3)

Bình luận (0)
H24
20 tháng 3 2017 lúc 9:56

\(\frac{3^{100}}{13}=\frac{9^{50}}{13}=\frac{81^{25}}{13}=\frac{\left(13.6+3\right)^{25}}{13}=K+\frac{3^{25}}{13}\)

\(\frac{3^{25}}{13}=\frac{3.\left(13.6+3\right)^6}{16}=M+\frac{3.3^6}{13}\)

\(\frac{3.3^6}{13}=\frac{3^3.\left(13.6+3\right)^1}{13}=Q+\frac{3^3.3^1}{13}\)

\(\frac{3^3.3^1}{13}=\frac{3^4}{13}=\frac{\left(13.6+3\right)^1}{13}=P+\frac{3^1}{13}\)

đáp : 3

Bình luận (0)
DT
Xem chi tiết
PH
6 tháng 1 2019 lúc 22:30

\(3^3\equiv1\left(mod13\right)\)

\(\Rightarrow\left(3^3\right)^{33}\equiv1^{33}\left(mod13\right)\)

\(\Rightarrow3^{99}\equiv1\left(mod13\right)\Rightarrow3^{99}.3\equiv1.3\left(mod13\right)\Rightarrow3^{100}\equiv3\left(mod13\right)\)

Vậy 3^100 chia 13 dư 3

Bình luận (0)
HN
18 tháng 2 2022 lúc 19:47

Tìm số dư cho phép chia 3100 chia cho 13

 

Bình luận (0)
AC
Xem chi tiết
H24
15 tháng 3 2018 lúc 20:34

1, Dễ thấy : \(5^2=25\equiv1\left(mod12\right)\)                                         \(7^2=49\equiv1\left(mod12\right)\)

             \(\rightarrow\left(5^2\right)^{35}\equiv1^{35}\left(mod12\right)\)                                     \(\rightarrow\left(7^2\right)^{35}\equiv1^{35}\left(mod12\right)\)

           \(\rightarrow5^{70}\equiv1\left(mod12\right)\)                                                 \(\rightarrow7^{70}\equiv1\left(mod12\right)\)

Vậy \(5^{70}:12\left(dư1\right)\) và \(7^{70}:12\left(dư1\right)\)Vậy \(\left(5^{70}+7^{70}\right):12\left(dư2\right)\)

Bài 2 :  Ta có : 3012 = 13.231 + 9

Do đó: 3012 đồng dư với 9 (mod13)

=> \(3012^3\)đồng dư với \(9^3\left(mod13\right)\). Mà \(9^3=729\)đồng dư với 1 (mod13)

=> \(3012^3\)đồng dư với 1 (mod13)

Hay \(3012^{93}\)đồng dư với 1 (mod13)

=> \(3012^{93}-1\)đồng dư với 0 (mod13)

Hay \(3012^{93}-1⋮13\left(đpcm\right)\)

           

Bình luận (0)

Bếu hít

Bình luận (0)
PM
Xem chi tiết
PA
17 tháng 4 2017 lúc 22:20


3100-1=(34)25-1=9125-1
9125 chia hết cho 7 nên 9125-1 chia 7 dư 1
Đồng dư thì chịu!!!

Bình luận (0)
BQ
Xem chi tiết
BL
Xem chi tiết
H24
22 tháng 10 2018 lúc 5:59

\(1+3+\left(3^2+3^3+3^4\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)

\(=4+3^2.\left(1+3+3^2\right)+...+3^{98}.\left(1+3+3^2\right)\)

\(=4+3^2.13+...+3^{98}.13\)

\(=4+13.\left(3^2+...+3^{98}\right)\)

=> \(1+3+3^2+...+3^{100}\) chia 13 dư 4

P/S: lưu ý từ 1 đến 3^100 có 101 số hạng, mà ghép thành 3 cặp thừa 2 cặp mà mk làm cặp đầu vì nếu làm cặp cuối ko tính ra đc 

Bình luận (0)