CHỨNG MINH RẰNG TỒN TẠI MỘT SỐ GỒM TOÀN CHỮ SỐ 6 CHIA HẾT CHO 2017
CHỨNG MINH RẰNG TỒN TẠI 1 SỐ GỒM TOÀN CHỮ SỐ 6 CHIA HẾT CHO 2017
Chứng minh rằng tồn tại một số gồm toàn chữ số 6 chia hết cho 2013
olm là con chó
CHỨNG MINH RẰNG TỒN TẠI MỘT SỐ GỒM TOÀN CHỮ SỐ 6 CHIA HẾT CHO2017
TA XÉT : 2018 SỐ SAU
A1=6;A2=66;A3=666;.....;A2018=666...6(2018 CHŨ SỐ 6)
KHIACHIA 2018 SỐ TRÊN CHO 2017 TA ĐƯỢC 2018 SỐ DƯ SAU(0;1;2;3;4;...;2016) VÌ CÓ 2018 SỐ DƯ MÀ CHỈ CÓ 2017 TRƯỜNG HỢ DƯ=> SẼ CÓ 2 SỐ NÀO ĐÓ CÙNG DƯ KHI CHIA CHO 2017
TA CÓ:
Am=666..66(GỒM M CHỮ SỐ 6) An=66..6(GỒM N CHỮ SỐ 6) GIẢ SỬ Am VÀ An CÙNG DƯ KHI CHIA CHO 2017=> Am-An CHIA HẾT CHO 2017 <=> 666..6(GỒM M CHỮ SỐ 6)-66..6(GỒM N CHỮ SỐ 6) CHIA HẾT CHO 2017 => 66..6000..0(GỒM M-N CHỮ SỐ 6 VÀ N CHỮ SỐ 0) CHIA HẾT CHO 2017 <=>66..6 NHÂN VỚI 10^N ( VỚI M-N CHỮ SỐ 6) CHIA HẾT CHO 2017 => MÀ (10^N VÀ 2017) NGUYÊN TỐ CÙNG NHAU => 666..6(GỒM M-N CHỮ SỐ 6) CHIA HẾT CHO 2017
VẬY TỒN TẠI SÓ GỒM TOÀN CHỮ SỐ 6 CHIA HẾT CHO 2017=> ĐIỀU PHẢI CHỨNG MINH
Chứng minh rằng tồn tại số chỉ gồm toàn chữ số 0 và 1 chia hết cho 2011. Có tồn tại số chỉ gồm toàn chữ số 1 chia hết cho 2011 hay không?
Chứng minh rằng tồn tại một số tự nhiên gồm toàn chữ số 1 chia hết cho 2013.
+) Chọn dãy số gồm 2014 số
1,11,111,....,111..11
(2014 cs1)
+) Theo nguyên lí Dirichlet tồn tại ít nhất 2 số có cùng số dư khi chia cho2013
Giả sử số đó là 111...11-111...11 (m>n)
(m cs1) (n cs 1)
=>111..1 - 11...1 chia hết cho 2013
=111...100..0 chia hết cho 2013
(m-n cs 1)(n cs0)
=111..1.10n
(m-n cs 1)
Mà 10n ko chia hết cho 2013
=>111..1 chia hết cho 2013 => ĐPCM (điều phải cm)
(m-n cs 1)
cho mình xin k nha
chứng minh rằng luôn tồn tại một số chia hết cho 13 mà số đó : a,chỉ gồm chữ số 5 và 0 b, chỉ gồm toàn chữ số 5
Chứng minh rằng tồn tại 1 số chia hết cho 17
a, Gồm toàn các chữ số 1 và 0
b, Gồm toàn chữ số 1
chứng minh rằng tồn tại số tự nhiên gồm toàn các chữ số 1 và 2 chia hết cho 23
Chứng minh tồn tại một số chia hết cho 17 gồm toàn chữ số 7
Xet 18 số :7;77;777;....;77777....7777;777777....7777777;7777...777777
16 c/s 7 17 c/s 7 18 c/s 7
có 18 số mà chỉ có 17 số dư trong phep chia cho 17, do đó theo nguyên lý Điricle tồn tại 2 số có cừng số dư trong phep chia cho 17 nên hiệu của 2 số đó chia hết cho 17
Gọi 2 số đó là 77777...77777;77777.....77777
m c/s 7 n c/s 7 \(\left(1\le n< m\le18\right)\)
Suy ra hiệu của chóng là:\(7777...7777-77777...7777⋮17\)
m c/s 7 n c/s 7
(Vì chóng có cừng số dư nên hiệu của chóng chia hết cho 17)
\(\Rightarrow\)77..7770000+77..777-7777...77777\(⋮\)17 (tách số bị trừ)
m-n c/s 7;n c/0;n c/s 7 n c/s 7
\(\Rightarrow\)777.....7777 000000...00000 \(⋮\)17 hay
m-n c/s 7 n c/s 0
7777...77777 \(\times\)10n \(⋮\)17
m-n c/s 7
Vị (10n,17)=1 nên
Suy ra :77777.....777777 \(⋮\)17
m-n c/s 7
Rã ràng số trên toàn c/s 7 và số chữ số >0 (vì n<m nen m-n>0)
Vậy tồn tại số chia hết cho 17 toàn c/s 7
nhớ tích cho mk nha, nếu bạn ko biết nguyên lý đá là gì thì bạn có thể tìm trên mạng