Những câu hỏi liên quan
DL
Xem chi tiết
BH
Xem chi tiết
KN
25 tháng 3 2019 lúc 13:52

                       Giải

\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)       

\(\Leftrightarrow S=\left(\frac{a}{c}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{c}{a}\right)+\left(\frac{c}{b}+\frac{a}{b}\right)\)

\(\Leftrightarrow S=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\)

Mà \(\left(\frac{a}{c}+\frac{c}{a}\right)\ge2\)\(\left(\frac{b}{c}+\frac{c}{b}\right)\ge2\)\(\left(\frac{b}{a}+\frac{a}{b}\right)\ge2\)

\(\Leftrightarrow S\ge2+2+2\)

\(\Leftrightarrow S\ge6\left(đpcm\right)\)

Bình luận (0)
KN
25 tháng 3 2019 lúc 13:53

Bui Huyen            

Mình quen đặt S rồi nên sửa lại N nhé.

Bình luận (0)
NN
Xem chi tiết
NN
Xem chi tiết
H24
26 tháng 6 2019 lúc 15:54

Bài 1:

Có: \(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{b+c+a};\frac{c}{a+c}>\frac{c}{a+c+b}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\\ \Rightarrow A>\frac{a+b+c}{a+b+c}\Rightarrow A>1\left(1\right)\)

Lại có: \(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< 1\Rightarrow\frac{b}{b+c}< \frac{b+a}{b+c+a};\frac{c}{a+c}< 1\Rightarrow\frac{c}{a+c}< \frac{c+b}{a+c+b}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}< \frac{a+c}{a+b+c}+\frac{b+a}{b+c+a}+\frac{c+b}{a+c+b}\\ \Rightarrow A< \frac{a+c+b+a+c+b}{a+b+c}\Rightarrow A< \frac{2a+2b+2c}{a+b+c}\Rightarrow A< \frac{2\left(a+b+c\right)}{a+b+c}\Rightarrow A< 2\left(2\right)\)

Từ (1) và (2) \(\Rightarrow1< A< 2\left(đpcm\right)\)

Bình luận (0)
NT
26 tháng 6 2019 lúc 15:43

Bài 2 ;

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.11}+...+\frac{3}{91.94}\)

= \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{91}-\frac{1}{94}\)

= \(1-\frac{1}{94}< 1\)

Vậy ........(đpcm )

Bình luận (0)
H24
26 tháng 6 2019 lúc 16:01

\(a,b,c\in N^{sao}\Rightarrow\frac{a}{b+a}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\left(1\right)\)

\(Taco:\frac{a+n}{b+n}>\frac{a}{b}\left(a,b,n\in N^{sao}\right)\Rightarrow A< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}=2\left(2\right)\)\(\left(1\right);\left(2\right)\Rightarrow1< A< 2\)

Bình luận (0)
DP
Xem chi tiết
NR

bạn gửi câu hỏi trên google đi

Bình luận (0)
NL
Xem chi tiết
NL
13 tháng 6 2019 lúc 19:19

a)  a2+b2-2ab=(a-b)2>=0

b) \(\frac{a^2+b^2}{2}\)\(\ge\)ab <=>  \(\frac{a^2+b^2}{2}\)-ab\(\ge\)0 <=> \(\frac{\left(a-b\right)^2}{2}\)\(\ge\)0 (ĐPCM)

c) a2+2a < (a+1)2=a2+2a+1 (ĐPCM)

Bình luận (0)
BV
Xem chi tiết
DT
Xem chi tiết
VD
12 tháng 2 2018 lúc 22:17

a,b,c có dương ko bn

Bình luận (0)
MQ
14 tháng 2 2018 lúc 9:21

đã bảo là 3 số thực thì có thể dương, có thể âm, có thể là 0, có thể là phân số...

Bình luận (0)
DT
14 tháng 2 2018 lúc 19:31

nhầm, 3 số dương

Bình luận (0)
NN
Xem chi tiết