A=1+3^2+3^3+...+3^2012 va B=3^2012:2.Tính B-2
CHO A=1+2012+2012^2+2012^3+2012^4+..........+2012^71+2012^72
B=2012^73-1.SO SANH A VA B
bạn thử vào đây xem có đúng ko
http://olm.vn/hoi-dap/question/55410.html
cho A=1+2012+2012^2+2012^3+.......+2012^100 và B=2012^101/2011. Tính B-A
Nhầm !!!!!
\(B-A=\frac{2012^{101}}{2011}-\frac{2012^{101}-1}{2011}=\frac{2012^{101}-\left(2012^{101}-1\right)}{2011}=\frac{1}{2011}\)
OK NHA
2012A = 2012(1 + 2012 + 20122 + .... + 2012100)
= 2012 + 20122 + 20123 + .... + 2012101
2012A - A = ( 2012 + 20122 + 20123 + .... + 2012101) - (1 + 2012 + 20122 + .... + 2012100)
2011A = 2012101 - 1
=> A = (2012101 - 1)/3
Vì (2012101 - 1)/2011 < 2012101/2011
=> A < B
Cho A=1/2+3/2+(3/2)2+(3/2)4+........+(3/2)2012 và B=(3/2)2012:2
Tính B-A
Bạn kiểm tra lại đề nhé, hình như đề hơi có vấn đề
cho A= 3+2^2+2^3+...+2^2010+2^2011,B=2^2012.so sanh A va B
cho A= 3+2^2+2^3+...+2^2010+2^2011,B=2^2012.so sanh A va B
2A = 6+2^3+2^4+.....+2^2012
A = 2A - A = (6+2^3+2^4+.....+2^2012)-(3+2^2+2^3+......+2^2011)
= 6+2^2012 - 3 - 2^2
= 2^2012 - 1
=> A < B
Tk mk nha
ta có :
\(A=3+2^2+2^3+.....+2^{2011}.\)
\(\Rightarrow2A=6+2^3+2^4+....+2^{2012}\)
\(\Rightarrow A=\left(6+2^3+2^4+...+2^{2012}\right)-\left(3+2^2+2^3+....+2^{2011}\right)\)
\(\Rightarrow A=-1+2^{2012}\)
vì -1+2^2012<2^2012 nên A <B
Cho A = 1+3+32+33 + ...+32012 va B= 32013 :2
Tính B-A
giúp mình nhanh nhé mình đang cần gấp mình tick cho
Ta có:A=\(1+3+3^2+3^3+...+3^{2012}\)
3A=\(3\cdot\left(1+3+3^2+3^3+...+3^{2012}\right)\)
3A=\(3+3^2+3^3+3^4+...+3^{2013}\)
3A-A=\(\left(3+3^2+3^3+3^4+...+3^{2013}\right)-\left(1+3+3^2+3^3+...+3^{2012}\right)\)
2A=\(3+3^2+3^3+3^4+...+3^{2013}-1-3-3^2-3^3-...-3^{2012}\)
2A=\(\left(3-3\right)+\left(3^2-3^2\right)+\left(3^3-3^3\right)+...+\left(3^{2012}-3^{2012}\right)+\left(3^{2013}-1\right)\)
2A=\(0+0+0+...+0+3^{2013}-1\)
2A=\(3^{2013}-1\)
A=\(\frac{3^{2013}-1}{2}\)
B=\(3^{2013}\div2\)
B=\(\frac{3^{2013}}{2}\)
VậyB-A=\(\frac{3^{2013}}{2}-\frac{3^{2013}-1}{2}\)
\(B-A=\frac{3^{2013}-\left(3^{2013}-1\right)}{2}\)
\(B-A=\frac{3^{2013}-3^{2013}+1}{2}\)
\(B-A=\frac{1}{2}=0,5\)
cho A=1/2+3/2+(3/2)^2+.....+(3/2)^2012, B=(3/2)^2013:2. tính B-A
\(\frac{3}{2}.A=\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2013}\)
\(\Rightarrow\frac{3}{2}.A-A=\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2013}-\left(\frac{1}{2}+\frac{3}{2}+\left(\frac{3}{2}\right)^2+...+\left(\frac{3}{2}\right)^{2012}\right)\)
\(\Rightarrow\frac{1}{2}.A=\frac{3}{4}+\left(\frac{3}{2}\right)^{2013}-\frac{1}{2}-\frac{3}{2}=\left(\frac{3}{2}\right)^{2013}-\frac{5}{4}\Rightarrow A=2.\left(\frac{3}{2}\right)^{2013}-\frac{5}{2}\)
\(B-A=\frac{1}{2}.\left(\frac{3}{2}\right)^{2013}-2.\left(\frac{3}{2}\right)^{2013}+\frac{5}{2}=-\left(\frac{3}{2}\right)^{2014}+\frac{5}{2}\)
câu 1: so sánh A=2011+2012/2012+2013 va B =2011+2012/2012+2013
câu 2: tính giá trị của biểu thức sau: A=7/4.(3333/1212+3333/2020+3333/3030+3333/4242)
câu 3: B=(1-1/2).(1-1/3).(1-1/4) nhân......(1-1/20)
câu 4: chứng tỏ rằng: B=1/22+1/32+1/42+1/62+1/72+1/82<1
TÍNH NHANH ;
A= 1*2+2*3+3*4+....+2011*2012
B =2012*2013+2013*2014