Những câu hỏi liên quan
NH
Xem chi tiết
YN
26 tháng 3 2022 lúc 21:47

`Answer:`

undefined

Bình luận (0)
 Khách vãng lai đã xóa
LC
Xem chi tiết
L7
17 tháng 4 2017 lúc 16:05

Min D = 2 <=> x= 2014

Bình luận (0)
H24
17 tháng 12 2017 lúc 21:59
Minh dong y voi ket qua ban nay
Bình luận (0)
NH
Xem chi tiết
KB
Xem chi tiết
DD
11 tháng 3 2017 lúc 6:40

A=6 nhé

X=2016

Bình luận (0)
DH
11 tháng 3 2017 lúc 11:36

\(A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|=\left|x-2014\right|+\left(\left|x-2013\right|+\left|2015-x\right|\right)\)

\(\Leftrightarrow A\ge\left|x-2014\right|+\left|x-2013+2015-x\right|=\left|x-2014\right|+2\ge2\)

Dấu "=" xảy ra <=> \(\left(x-2013\right)\left(2015-x\right)\ge0\) và \(\left|x-2014\right|=0\)

\(\Leftrightarrow2013\le x\le2015\) và \(x=2014\) (thỏa mãn)

Vậy \(A_{min}=2\) tại \(x=2014\)

Bình luận (0)
NT
Xem chi tiết
TN
27 tháng 3 2020 lúc 20:20

Để A=|x-2013| + |x-2014| + |x-2015| có giá trị nhỏ nhất thì |x-2013| + |x-2014| + |x-2015 nhỏ nhất

=>|x-2013| + |x-2014| + |x-2015=0

Vậy A=0 là nhỏ nhất

Mk lm chưa đầy đủ còn nhiều thiếu sót bn thông cảm nha mk bận rồi

Bình luận (0)
 Khách vãng lai đã xóa
VH
Xem chi tiết
PL
Xem chi tiết
DH
5 tháng 2 2017 lúc 8:43

Mấy bạn kia làm sai hết rồi !!

P = |2013 - x| + |2014 - x| = |2013 - x| + |x - 2014|

Áp dụng bđt |a| + |b| ≥ |a + b| ta có :

P = |2013 - x| + |x - 2014| ≥ |2013 - x + x - 2014| =|- 1| = 1

Dấu "=" xảy ra <=> (2013 - x)(x - 2014) ≥ 0 <=> 2013 ≤ x ≤ 2014

Dậy gtnn của P là 1 <=> 2013 ≤ x ≤ 2014

Bình luận (0)
OO
4 tháng 2 2017 lúc 20:04

\(\left|2013-x\right|+\left|2014-x\right|\ge\left|2013-x+2014-x\right|\)

\(\left|2013-x\right|+\left|2014-x\right|\ge\left|4027\right|\)

\(\left|2013-x\right|+\left|2014-x\right|\ge4027\)

\(\Rightarrow\)\(Min_P=4027\)

Bình luận (0)
KA
4 tháng 2 2017 lúc 19:59

Ta có :

\(\left|2013-x\right|+\left|2014-x\right|\ge\left|2013-x+2014+x\right|\)

\(\left|2013-x\right|+\left|2014-x\right|\ge\left|4027\right|\)

\(\left|2013-x\right|+\left|2014-x\right|\ge4027\)

\(\Rightarrow Min_P=4027\)

Bình luận (0)
TN
Xem chi tiết
DH
25 tháng 11 2016 lúc 20:17

Ta có: A = |x-2013|+|x-2014|+|x-2015|

Vì \(\left|x-2013\right|\ge0;\left|x-2014\right|\ge0;\left|x-2015\right|\ge0\)

\(\Rightarrow\hept{\begin{cases}x-2013=0\\x-2014=0\\x-2015=0\end{cases}\Rightarrow\hept{\begin{cases}x=2013\\x=2014\\x=2015\end{cases}}}\)

Vậy x không có giá trị vì x không thể cùng lúc có tới 3 giá trị khác nhau

\(\Rightarrow x\in\theta\)

Bình luận (0)
QT
25 tháng 11 2016 lúc 20:15

A =2 khi x=2013;2014;2015

Bình luận (0)
H24
25 tháng 11 2016 lúc 20:29

GTNN A=2

Bình luận (0)
NA
Xem chi tiết
HN
10 tháng 8 2016 lúc 11:23

\(A=\left|x-2011\right|+\left|x-2012\right|+\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)

\(=\left(\left|x-2011\right|+\left|2015-x\right|\right)+\left(\left|x-2012\right|+\left|2014-x\right|\right)+\left|x-2013\right|\)

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) , dấu "=" xảy ra khi a,b cùng dấu. Ta có : \(\left|x-2011\right|+\left|2015-x\right|\ge\left|x-2011+2015-x\right|=4\)

\(\left|x-2012\right|+\left|2014-x\right|\ge\left|x-2012+2014-x\right|=2\)

\(\left|x-2013\right|\ge0\)

\(\Rightarrow A\ge4+2+0=6\)

Dấu "=" xảy ra khi \(\begin{cases}2011\le x\le2015\\2012\le x\le2014\\x=2013\end{cases}\) \(\Leftrightarrow x=2013\)

Vậy A đạt giá trị nhỏ nhất bằng 6 tại x = 2013

Bình luận (3)
KD
10 tháng 8 2016 lúc 11:19

x=2013

Bình luận (0)
NC
Xem chi tiết
LC
12 tháng 1 2020 lúc 23:52

\(A=\left|x-2011\right|+\left|x-2012\right|+\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)

\(=\left(\left|x-2011\right|+\left|x-2015\right|\right)+\left(\left|x-2012\right|+\left|x-2014\right|\right)+\left|x-2013\right|\)

Đặt \(B=\left|x-2011\right|+\left|x-2015\right|\)

\(=\left|x-2011\right|+\left|2015-x\right|\ge\left|x-2011+2015-x\right|=4\left(1\right)\)

Dấu"=" xảy ra \(\Leftrightarrow\left(x-2011\right)\left(2015-x\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-2011\ge0\\2015-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2011< 0\\2015-x< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge2011\\x\le2015\end{cases}}\)hoặc \(\hept{\begin{cases}x< 2011\\x>2015\end{cases}\left(loai\right)}\)

\(\Leftrightarrow2011\le x\le2015\)

Đặt \(C=\left|x-2012\right|+\left|x-2014\right|\)

\(=\left|x-2012\right|+\left|2014-x\right|\ge\left|x-2012+2014-x\right|=2\left(2\right)\)

Dấu"="xảy ra \(\Leftrightarrow\left(x-2012\right)\left(2014-x\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-2012\ge0\\2014-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2012< 0\\2014-x< 0\end{cases}}\) 

\(\Leftrightarrow\hept{\begin{cases}x\ge2012\\x\le2014\end{cases}}\)hoặc\(\hept{\begin{cases}x< 2012\\x>2014\end{cases}\left(loai\right)}\)

\(\Leftrightarrow2012\le x\le2014\)

Ta có: \(\left|x-2013\right|\ge0;\forall x\left(3\right)\)

Dấu"="Xảy ra \(\Leftrightarrow\left|x-2013\right|=0\)

                      \(\Leftrightarrow x=2013\)

Từ (1),(2) và (3) \(\Rightarrow B+C+\left|x-2013\right|\ge6\)

Hay \(A\ge6\)

Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}2011\le x\le2015\\2012\le x\le2014\\x=2013\end{cases}}\)\(\Leftrightarrow x=2013\)

Vậy \(A_{min}=6\Leftrightarrow x=2013\)

Bình luận (0)
 Khách vãng lai đã xóa