Những câu hỏi liên quan
CD
Xem chi tiết
HH
Xem chi tiết
DK
Xem chi tiết
DV
29 tháng 3 2017 lúc 21:58

0

k mình nha

Bình luận (0)
NC
Xem chi tiết
NH
18 tháng 3 2016 lúc 20:41

viết lại đề cho rõ phân số đi bn

Bình luận (0)
HC
Xem chi tiết
NH
Xem chi tiết
AN
27 tháng 7 2017 lúc 14:52

Ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)

\(=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Thế vô bài toán được

\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\)

\(=1-\frac{1}{\sqrt{2016}}\)

Bình luận (0)
BA
Xem chi tiết
MS
19 tháng 12 2017 lúc 15:02

\(vt=1+2015+2015^2+2015^3+2015^4+2015^5+2015^6+2015^7\)

\(=\left(1+2015\right)+\left(2015^2+2015^3\right)+\left(2015^4+2015^5\right)+\left(2015^6+2015^7\right)\)

\(=1\left(1+2015\right)+2015^2\left(1+2015\right)+2015^4\left(1+2015\right)+2015^6\left(1+2015\right)\)

\(=\left(2015+1\right)\left(1+2015^2+2015^4+2015^6\right)\)

\(=2016\left(1+2015^2+2015^4+2015^6\right)\)

\(=2016\left[\left(1+2015^2\right)+\left(2015^4+2015^6\right)\right]\)
\(=2016\left[1\left(1+2015^2\right)+2015^{2014}\left(1+2015^2\right)\right]=vp\left(đpcm\right)\)

\(=2016\left(1+2015^{2014}\right)\left(1+2015^{2012}\right)\)

Bình luận (1)
TP
Xem chi tiết
H24
Xem chi tiết
LC
7 tháng 1 2016 lúc 15:51

=2015-(2015-2016)-2016+22017-2015-22015/22014-(1-4)-3-(5+6)+11

=(2015-2015)+(2016-2016)+22-2+3-3-11+11

=0+0+(4-2)+(3-3)-(11-11)

=2

Bình luận (0)
H24
7 tháng 1 2016 lúc 15:44

giải thích củ thể dùm mình cái

 

Bình luận (0)