Những câu hỏi liên quan
TV
Xem chi tiết
TT
Xem chi tiết
DP
Xem chi tiết
TD
8 tháng 6 2017 lúc 18:30

\(\frac{a}{b}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}+\frac{1}{12}\)

\(\frac{a}{b}=\left(1+\frac{1}{2}\right)+\left(\frac{1}{2}+\frac{1}{11}\right)+...+\left(\frac{1}{6}+\frac{1}{7}\right)\)

\(\frac{a}{b}=\frac{13}{1.2}+\frac{13}{2.11}+...+\frac{13}{6.7}\)

chọn mẫu chung

Thừa số phụ tương ứng k1,k2,k3,...,k6 ( 6 phân số )

\(\frac{a}{b}=\frac{13k_1}{1.2.3...12}+\frac{13k_2}{1.2.3...12}+...+\frac{13k_6}{1.2.3...12}\)

\(\frac{a}{b}=\frac{13.\left(k_1+k_2+k_3+...+k_6\right)}{1.2.3...12}\)

Vì tử số \(⋮\)13. Mẫu không chứa thừa số nguyên tố là 13

nên khi rút gọn phân số \(\frac{a}{b}\) và phân số tối giản thì a \(⋮\)13

Bình luận (0)
TV
5 tháng 11 2017 lúc 10:33

Ta có :

n2 + n + 1 = n . ( n + 1 ) + 1

Vì n . ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên n . (  n + 1 ) + 1 là một số lẻ nên không chia hết cho 4

Vì n . ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9. Do đó n . ( n + 1 ) + 1 không có tận cùng là 0

hoặc 5 . Vì vậy, n2 + n + 1 không chia hết cho 5

P/s đùng để ý đến câu trả lời của mình

Bình luận (0)
MT
24 tháng 6 lúc 14:50

Ai giải thích cho tui khúc thừa số phụ với, tui chẳng hiểu cái j._.

Bình luận (0)
PA
Xem chi tiết
GV
14 tháng 12 2017 lúc 14:39

Khi chia bốn số a1 , a2 , a3 , a4 cho số 3 thì theo nguyên lý Direclet sẽ có ít nhất 2 số có cùng số dư

=> Hiệu của chúng chia hết cho 3 => Tích đã cho chia hết cho 3.

Ta sẽ chứng minh tích đã cho cũng chia hết cho 4.

Xét tính chẵn, lẻ của bốn số đã cho, có 3 khả năng sau:

TH1: cả 4 số đều chẵn (hoặc đều lẻ), khi đó hiệu của từng cặp hai số chia hết cho 2 => Tích đã cho chia hết cho 26 => Tích chia hết cho 4

TH2: Có 3 số chẵn (hoặc lẻ) còn 1 số còn lại là lẻ (hoặc chẵn).  Giả sử 3 số chẵn (hoặc lẻ) đó là x, y và z thì x - y và x - z đều chia hết cho 2 => Tích đã cho chia hết cho 4

TH3: Có 2 số chẵn (giả sử là x và y) và 2 số lẻ (giả sử là z và t), khi đó x - y và z - t đều chia hết cho 2 => Tích đã cho chia hết cho 4.

KL: Tích đã cho chia hết cho 3 và 4 => Nó chia hết cho 12.

Bình luận (0)
H24
16 tháng 4 2020 lúc 17:05

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

Bình luận (0)
 Khách vãng lai đã xóa
NG
Xem chi tiết
HB
21 tháng 1 2018 lúc 15:24

thua hết à

Bình luận (0)
NU
Xem chi tiết
SM
12 tháng 9 2018 lúc 21:05

A = 111 + 112 + 113 + ... + 1199 + 11100

= ( 111 + 112 ) + ( 113 + 114 ) + ( 115 + 116 ) + ..... + ( 1199 + 11100 )

= 11 ( 1 + 11 ) + 113 ( 1 + 11 ) + 115 ( 1 + 11 ) + .... + 1199 ( 1 + 11 )

= ( 1 + 11 ) ( 11 + 113 + 115 + .... + 1199 )

= 12 ( 11 + 113 + 115 + .... + 1199 ) chia hết cho 12

Bình luận (0)
H24
12 tháng 9 2018 lúc 21:06

Ta có \(11^1+11^2+11^3+...+11^{99}+11^{100}=\left(11^1+11^2\right)+\left(11^3+11^4\right)+..+\left(11^{99}+11^{100}\right)\)

\(=\left(11^1+11^2\right)+11^2.\left(11^1+11^2\right)+..+11^{98}.\left(11+11^2\right)\)

\(=132+11^2.132+...+11^{98}.132\)

\(=132.\left(11^0+11^2+...+11^{98}\right)\)

Có \(132⋮12\)nên \(132.\left(11^0+11^2+...+11^{98}\right)⋮12\)

Vậy \(11^1+11^2+11^3+...+11^{99}+11^{100}⋮12\)

Bình luận (0)
H24
12 tháng 9 2018 lúc 21:07

\(=\left(11^1+11^2\right)+...+\left(11^{99}+11^{100}\right)\)

=11(1+11)+....+11^99(1+11)

=12(11+11^3+...+11^99)\(⋮\)12

Bình luận (0)
AV
Xem chi tiết
CV
Xem chi tiết
NN
Xem chi tiết
TL
3 tháng 4 2015 lúc 15:53

a) \(A=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+...+\frac{1}{60}\right)+...+\frac{1}{70}\)

Nhận xét:

\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\ge\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)

\(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{30}\ge\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)

\(\frac{1}{31}+...+\frac{1}{60}\ge\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{30}{60}=\frac{1}{2}\)

\(A\ge\frac{1}{2}+\frac{1}{3}+\frac{1}{2}+\frac{1}{61}...+\frac{1}{70}\ge\frac{1}{2}+\frac{1}{3}+\frac{1}{2}=\frac{4}{3}\)

Bình luận (0)
TL
3 tháng 4 2015 lúc 17:08

Sorry ,tất cả dấu lớn hơn hoặc bằng đổi thành dấu > nhé 

Bình luận (0)
WF
29 tháng 3 2017 lúc 20:47

còn câu b

Bình luận (0)