Tính A-B biết
A=3/2+13/12+31/30+...+9901/9900
B=5/6+19/20+41/42+...+10099/10100
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
B=5/6+19/20+41/42+......+10099/10100 và C= 3/2+13/12+31/30+..........+9901/9900
Tính C - B
Cho A=\(\frac{3}{2}+\frac{13}{12}+\frac{21}{20}+...+\frac{9901}{9900}\)và B=\(\frac{5}{6}+\frac{19}{20}+\frac{41}{42}+...+\frac{10099}{10100}\)Tính A-B
Cho A =\(\frac{3}{2}\)+\(\frac{13}{12}\)+\(\frac{31}{30}\)+...+\(\frac{9901}{9900}\),B=\(\frac{5}{6}\)+\(\frac{19}{20}\)+\(\frac{41}{42}\)+...+\(\frac{10099}{10100}\).Tính A-B
Cho B=5/6+19/20+41/42+...+10099/10100 và C=3/2+13/12+31/30+...+9901/ Tính C-B
Cho A = 3/2 + 13/12 + 31/30 + 57/56 + 91/90
và B = 5/6 + 19/20 + 41/42 + 71/72 + 109/110
Tính A - B
A - B = \(\left(1+\frac{1}{2}+1+\frac{1}{12}+1+\frac{1}{30}+1+\frac{1}{56}+1+\frac{1}{90}\right)-\left(1-\frac{1}{6}+1-\frac{1}{20}+1-\frac{1}{42}+1-\frac{1}{72}+1-\frac{1}{110}\right)\)= \(\left(5+\frac{1}{2}+\frac{1}{12}+\frac{1}{30}+\frac{1}{56}+\frac{1}{90}\right)-\left(5-\frac{1}{6}-\frac{1}{20}-\frac{1}{42}-\frac{1}{72}-\frac{1}{110}\right)\)\
= \(5+\frac{1}{2}+\frac{1}{12}+\frac{1}{30}+\frac{1}{56}+\frac{1}{90}-5+\frac{1}{6}+\frac{1}{20}+\frac{1}{42}+\frac{1}{72}+\frac{1}{110}\)
= \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+\frac{1}{9.10}+\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+\frac{1}{8.9}+\frac{1}{10.11}\)
= \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}=1-\frac{1}{11}=\frac{10}{11}\)
Cho A= \(\frac{3}{2}+\frac{13}{12}+\frac{31}{30}+\frac{57}{56}+\frac{91}{90}\)
B= \(\frac{5}{6}+\frac{19}{20}+\frac{41}{42}+\frac{71}{72}+\frac{109}{110}\)
Tính A-B
Ta có:
\(A=\frac{3}{2}+\frac{13}{12}+\frac{31}{30}+\frac{57}{56}+\frac{91}{90}\)
\(=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{12}\right)+\left(1+\frac{1}{30}\right)+\left(1+\frac{1}{56}\right)+\left(1+\frac{1}{90}\right)\)
\(=\left(1+1+1+1+1\right)+\left(\frac{1}{2}+\frac{1}{12}+\frac{1}{30}+\frac{1}{56}+\frac{1}{90}\right)\)
\(=5+\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+\frac{1}{9.10}\right)\)
\(B=\frac{5}{6}+\frac{19}{20}+\frac{41}{42}+\frac{71}{72}+\frac{109}{110}\)
\(=\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{20}\right)+\left(1-\frac{1}{42}\right)+\left(1-\frac{1}{72}\right)+\left(1-\frac{1}{110}\right)\)
\(=\left(1+1+1+1+1\right)-\left(\frac{1}{6}+\frac{1}{20}+\frac{1}{42}+\frac{1}{72}+\frac{1}{110}\right)\)
\(=5-\left(\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+\frac{1}{8.9}+\frac{1}{10.11}\right)\)
=> A - B =\(\left[5+\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+\frac{1}{9.10}\right)\right]-\left[5-\left(\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+\frac{1}{8.9}+\frac{1}{10.11}\right)\right]\)
= \(5+\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+\frac{1}{9.10}-5+\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+\frac{1}{8.9}+\frac{1}{10.11}\)
= \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
= \(1-\frac{1}{11}\)
= \(\frac{10}{11}\)
\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{12}\right)+\left(1+\frac{1}{30}\right)+\left(1+\frac{1}{56}\right)+\left(1+\frac{1}{90}\right)\)
\(B=\left(1-\frac{1}{6}\right)+\left(1-\frac{19}{20}\right)+\left(1-\frac{1}{42}\right)+\left(1-\frac{1}{72}\right)+\left(1-\frac{1}{110}\right)\)
Mk gợi ý đến đây thôi , mk bí rồi đợi mk nghĩ đã!
mk sửa lại 1-1/20 chứ ko phải 1-19/20
\(A=\left(5+\frac{1}{2}+\frac{1}{12}+\frac{1}{30}+\frac{1}{56}+\frac{1}{90}\right)\)
\(B=\left(5-\frac{1}{6}-\frac{1}{20}-\frac{1}{42}-\frac{1}{72}-\frac{1}{110}\right)\)
\(A-B=\left(5+\frac{1}{2}+\frac{1}{12}+\frac{1}{30}+\frac{1}{56}+\frac{1}{90}\right)-\left(5-\frac{1}{6}+\frac{1}{20}+\frac{1}{42}+\frac{1}{72}+\frac{1}{110}\right)\)
\(A-B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\)
\(A-B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\)
\(A-B=1-\frac{1}{11}\)
\(A-B=\frac{10}{11}\)
Tính nhanh:
a) 5/6+11/12+19/20+29/30+41/42+55/56+71/72+89/90
b) Tính tổng của 10 phân số trong phép cộng sau:
1/2+5/6+11/12+19/20+29/30+41/42+55/56+71/7289/90
\(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=8-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=8-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=8-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=8-\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=\frac{38}{5}\)
`Answer:`
a) \(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}\)
\(=1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+1-\frac{1}{30}+1-\frac{1}{42}+1-\frac{1}{56}+1-\frac{1}{72}+1-\frac{1}{90}\)
\(=8-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}-\frac{1}{72}-\frac{1}{90}\)
\(=8-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)
\(=8-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(=8-\frac{2}{5}\)
\(=\frac{38}{5}\)
b) \(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+1-\frac{1}{30}+1-\frac{1}{42}+1-\frac{1}{56}+1-\frac{1}{72}+1-\frac{1}{90}\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=\frac{81}{10}\)
Bài 1 : Cho A= \(\dfrac{3.\left|x\right|+2}{\left|x\right|-5}\)
Tìm \(x\in Z\) để A là số tự nhiên .
Bài 2 : Tính A = \(\dfrac{101}{120}+\dfrac{1}{2.6}+\dfrac{1}{4.9}+\dfrac{1}{6.12}+...+\dfrac{1}{38.60}\)
Bài 3 : Cho :
A = \(\dfrac{3}{2}+\dfrac{13}{12}+\dfrac{31}{30}+...+\dfrac{9901}{9900}\)
B = \(\dfrac{5}{6}+\dfrac{19}{20}+\dfrac{41}{42}+...+\dfrac{10099}{10100}\)
Tính A - B .
Bài 4 : Tìm \(x\) biết :
\(\left|2x-7\right|+\left|21-6x\right|=44\)
Bài 5 : Tìm \(x\in Z\) để A = \(\dfrac{4x+11}{6x+5}\) là số nguyên .
Giúp mình với , thứ Sáu mình nộp rồi .
Các bạn làm một bài thôi cũng được , mình tick cho !
1.
A=\(\dfrac{3\left|x\right|+2}{\left|x\right|-5}=\dfrac{3\left|x\right|-15+17}{\left|x\right|-5}=\dfrac{3\left(\left|x\right|-5\right)+17}{\left|x\right|-5}=\dfrac{3\left(\left|x\right|-5\right)}{\left|x\right|-5}+\dfrac{17}{\left|x-5\right|}=3+\dfrac{17}{\left|x\right|-5}\)
Để A \(\in\)Z thì \(\left|x\right|-5\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)
Ta có :
\(\left|x\right|-5=-17\Rightarrow\left|x\right|=-12\left(KTM\right)\)
\(\left|x\right|-5=-1\Rightarrow\left|x\right|=4\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
\(\left|x\right|-5=1\Rightarrow\left|x\right|=6\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
\(\left|x\right|-5=17\Rightarrow\left|x\right|=32\Rightarrow\left[{}\begin{matrix}x=32\\x=-32\end{matrix}\right.\)
Vậy để A \(\in\)Z thì x \(\in\) {-32;-6;-4;4;6;32}
tính tổng : A = 1/2 + 5/6 + 11/12 + 19/20 + 29/30 + 41/42 + 55/56
`= 1 - 1/2 + 1 - 1/6 + ... + 1 - 1/56`
`= 1 - 1/(1.2) + 1 - 1/(2.3) + ... + 1 - 1/(7.8)`
`= 7 - (1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4+ 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8`.
`= 8 - 1/8`
`= 63/64`.
`A=1/2+5/6+11/12+19/20+29/30+41/42+55/56`
`A=1-1/2+1-1/6+1-1/12+1-1/20+1-1/30+1-1/42+1-1/56`
`A=(1+1+1+1+1+1+1)-(1/2+1/6+1/12+....+1/56)`
`A=7-(1/[1xx2]+1/[2xx3]+1/[3xx4]+....+1/[7xx8])`
`A=7-(1-1/2+1/2-1/3+1/3-1/4+....+1/7-1/8)`
`A=7-(1-1/8)`
`A=7-(8/8-1/8)`
`A=7-7/8`
`A=56/8-7/8=49/8`