CMR: P=34n+1+2 chia hết cho 5
( chú ý làm theo phương pháp đồng dư thức nhé!)
CMR :(7.52n+12.6n) chia hết cho 19.
Dùng phương pháp đồng dư thức nhé,
Tìm số dư trong phép chia :29455 -3 cho 9 ( Làm theo phương pháp đồng dư các bạn nhé!)
ta có
2945 đồng dư 2(mod 9)
=>2945^2 đồng dư 32(mod 9)
Hay 2945^5 đồng dư 5(mod 9)
=>2945^5 - 3 đồng dư 2(mod 9)
Nếu bài làm của mình đúng thì tick nha bạn,cảm ơn nhiều.
làm theo kiểu đồng dư thức nhé. Làm nhanh giùm mình, mình đang cần gấp
1, Tìm dư trong phép chia
1532^5 - 1 cho 9
2, Chứng minh: A= 7.5^2.n + 12.6^n chia hết cho 16
Chứng minh rằng 2^2^2n + 5 chia hết cho 7
Làm theo đồng dư thức nhé mn
Mình đang cần gấp
Chứng minh 2^2^2n + 5 chia hết cho 7 với mọi n thuộc N ? ( Làm theo đồng dư thức nhé , bạn nào làm đúng tớ tick cho bạn đó )
Ta có : 22n = ( 22 )n = 4n mà 4 \(\equiv\)1 ( mod3 )
=> 4n \(\equiv\)1 ( mod3 ) ( n thuộc N )
=> 4n = 3k + 1 ( k thuộc N )
=> 2 ^ 2 ^ 2n = 23k+1 = 8k . 2 mà 8 \(\equiv\)1 ( mod7 )
=> 8k \(\equiv\)1 ( mod7 )
=> 2 . 8k \(\equiv\)2 ( mod7 )
Hay 2 ^ 2 ^ 2n \(\equiv\)2 ( mod7 ) => 2 ^ 2 ^ 2n + 5 \(\equiv\)2 - 2 ( mod7 )
Mà 5 \(\equiv\)- 2 ( mod7 ) => 2 ^ 2 ^ 2n + 5 \(\equiv\)0 ( mod7 )
Vậy 2 ^ 2 ^ 2n + 5 chia hết cho 7 ( dpcm )
Tìm số tự nhiên bé nhất sao cho khi chia số đó cho 3 ; 4 ; 5 đều dư 1 và chia hết cho 7 .
cac bạn làm giúp mình bài này với nhé theo phương pháp của lớp 4 nhe
CMR: 22^6n+2+3 chia hết cho 19(2 mũ 2 mũ 6n+2). Giải theo cách đồng dư thức nhé!:)))))
CMR: A=3535+5252-2 chia hết cho 17
Làm theo cách đồng dư thức nha!
Ta có: 35=1(mod 17)
=>3535=135(mod 17)
=>3535=1 (mod 17)
Ta có: 52=1(mod 17)
=>5252 = 152(mod 17)
=>5252=1(mod 17)
=>3535+5252-2=1+1-2 (mod 17)
=>A=0 (mod 17)
=>A chia hết cho 17 (đpcm)
Chứng minh rằng tổng: 2+22+23+.........+22004 chia hết cho 42
Chú ý : Dùng đồng dư modul
Giải chi tiết hộ mình với nhé!
Đặt A = 2 + 22 + 23 + ... + 22004
2A = 22 + 23 + 24 + ... + 22005
2A - A = (22 + 23 + 24 + ... + 22005) - (2 + 22 + 23 + ... + 22004)
A = 22005 - 2
Ta có: \(2^6\equiv1\left(mod21\right)\)
=> \(2^{2004}\equiv1\left(mod21\right)\)
=> 22004 - 1 chia hết cho 21
=> 2.(22004 - 1) chia hết cho 42
=> 22005 - 2 chia hết cho 42
=> A chia hết cho 42 (đpcm)
\(\left(2+2^2+2^3+2^4+2^5+2^6\right)+2^5\left(2+2^2+2^3+2^4+2^5+2^6\right)+...+2^{334}\left(2+2^2+2^3+2^4+2^5+2^6\right)\)
=\(126+2^5.126+...+2^{334}.126=126\left(1+2^5+2^{11}+...+2^{334}\right)\) chia hết cho 126 hay 42