Những câu hỏi liên quan
LD
Xem chi tiết
PD
Xem chi tiết
NK
28 tháng 12 2015 lúc 22:06

ta có

2945 đồng dư 2(mod 9)

=>2945^2 đồng dư 32(mod 9)

Hay 2945^5 đồng dư 5(mod 9)

=>2945^5 - 3 đồng dư 2(mod 9)

Nếu bài làm của mình đúng thì tick nha bạn,cảm ơn nhiều.

 

Bình luận (0)
H24
Xem chi tiết
TL
Xem chi tiết
TA
16 tháng 8 2017 lúc 18:37

bài 4 à bà

Bình luận (0)
GV
Xem chi tiết
NT
4 tháng 1 2018 lúc 9:36

Ta có : 22n = ( 22 )n = 4n mà 4 \(\equiv\)1 ( mod3 )

                             => 4n \(\equiv\)1 ( mod3 ) ( n thuộc N )

=> 4n = 3k + 1 ( k thuộc N )

=> 2 ^ 2 ^ 2n = 23k+1 = 8k . 2 mà 8 \(\equiv\)1 ( mod7 )

                                  => 8k \(\equiv\)1 ( mod7 )

                                 => 2 . 8k \(\equiv\)2 ( mod7 )

Hay 2 ^ 2 ^ 2n \(\equiv\)2 ( mod7 )  => 2 ^ 2 ^ 2n + 5 \(\equiv\)2 - 2 ( mod7 )

Mà 5 \(\equiv\)- 2 ( mod7 )             => 2 ^ 2 ^ 2n + 5 \(\equiv\)0 ( mod7 )

           Vậy 2 ^ 2 ^ 2n + 5 chia hết cho 7 ( dpcm )

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
IW
Xem chi tiết
H24
13 tháng 3 2016 lúc 13:26

Ta có: 35=1(mod 17)

=>3535=135(mod 17)

=>3535=1 (mod 17)

Ta có: 52=1(mod 17)

=>5252 = 152(mod 17)

=>5252=1(mod 17)

=>3535+5252-2=1+1-2 (mod 17)

=>A=0 (mod 17)

=>A chia hết cho 17 (đpcm)

Bình luận (0)
NL
Xem chi tiết
SG
17 tháng 9 2016 lúc 22:01

Đặt A = 2 + 22 + 23 + ... + 22004

2A = 22 + 23 + 24 + ... + 22005

2A - A = (22 + 23 + 24 + ... + 22005) - (2 + 22 + 23 + ... + 22004)

A = 22005 - 2

Ta có: \(2^6\equiv1\left(mod21\right)\)

=> \(2^{2004}\equiv1\left(mod21\right)\)

=> 22004 - 1 chia hết cho 21

=> 2.(22004 - 1) chia hết cho 42

=> 22005 - 2 chia hết cho 42

=> A chia hết cho 42 (đpcm)

Bình luận (0)
NM
17 tháng 9 2016 lúc 21:26

\(\left(2+2^2+2^3+2^4+2^5+2^6\right)+2^5\left(2+2^2+2^3+2^4+2^5+2^6\right)+...+2^{334}\left(2+2^2+2^3+2^4+2^5+2^6\right)\)

=\(126+2^5.126+...+2^{334}.126=126\left(1+2^5+2^{11}+...+2^{334}\right)\) chia hết cho 126 hay 42

 

Bình luận (1)