tìm số tự nhiên chia hết cho 7 có 3 chữ số biết rằng tổng các chữ số của nó chia hết cho 14
tìm số tự nhiên chia hết cho 7 có 3 chữ số biết tổng các chữ số của nó la 14
Tìm số tự nhiên chia hết cho 7 có 3 chữ số, biết tổng các chữ số của nó bằng 14
Gọi số cần tìm là abc ( a; b; c là chữ số ; a khác 0)
abc = 100a + 10b + c = (98a + 7b) + (a+ b + c) + (a + 2b)
Theo bài cho abc chia hết cho 7 và a + b + c = 14
Vì 14 chia hết cho 7; 98a + 7b chia hết cho 7 nên a + 2b chia hết cho 7
Mà a + 2b < 10 + 2.10 = 30 => a+ 2b có thể bằng 7; 14; 21; 28
+) Nếu a+ 2b = 7 => a = 1; b = 3 hoặc a = 3 ; b = 2 ; a = 5 ; b = 1; a = 7 ; b = 0 tương ứng c = 10 ; c = 9; c = 8; c = 7
Vì c là chữ số nên loại c = 10
=> abc = 329 hoặc 518; 707
+) Nếu a + 2b = 14 => a + b + b = 14 mà a + b + c = 14 => b = c
a + 2b = 14 => a chẵn mà b là chữ số => a = 2; b = c = 6; a = 4; b = c = 5; a = 6; b = c = 4; a = 8 thì b = c = 3
=> abc = 266; 455; 644; 833
+) Nếu a+ 2b = 21 => a lẻ ; b là chữ số
=> a = 3; b = 9; c = 2; hoặc a = 5; b = 8; c = 1 ; a = 7 ; b = 7; c = 0
=> abc = 392; 581; 770
+) Nếu a+ 2b = 28 => a chẵn ; b là chữ số
=> không có a; b; c thỏa mãn
Vậy............
tìm số tự nhiên chia hết cho 7 có 3 chữ số biết rằng tổng các chữ số của số đó = 14
Bạn có thể lập trình để kiểm tra kết quả như thế này nhé:
Gọi số đó là \(\overline{xyz}\). Theo đề bài, ta có: \(x+y+z=14\) và \(100x+10y+z⋮7\) \(\Rightarrow99x+9y⋮7\) \(\Rightarrow11x+y⋮7\) \(\Rightarrow4x+y⋮7\)
Do \(4\le4x+y\le45\) nên \(4x+y\in\left\{7,14,21,28,35,42\right\}\)
Nếu \(4x+y=7\Rightarrow x=1,y=3\) \(\Rightarrow z=10\), vô lí
Nếu \(4x+y=14\Rightarrow\left(x,y\right)=\left(2,6\right),\left(3,2\right)\) \(\Rightarrow\overline{xyz}=266,329\)
Nếu \(4x+y=21\) \(\Rightarrow\left(x,y\right)=\left(3,9\right),\left(4,5\right),\left(5,1\right)\) \(\Rightarrow\overline{xyz}=392,455,518\)
Nếu \(4x+y=28\Rightarrow\left(x,y\right)=\left(5,8\right),\left(6,4\right),\left(7,0\right)\) \(\Rightarrow\overline{xyz}=581,644,707\)
Nếu \(4x+y=35\) \(\Rightarrow\left(x,y\right)=\left(7,7\right),\left(8,3\right)\) \(\Rightarrow\overline{xyz}=770,833\)
Nếu \(4x+y=42\Rightarrow\left(x,y\right)=\left(9,6\right)\) \(\Rightarrow z=-1\), vô lí.
Vậy ta tìm được các số như trên.
770 là số thích hợp vì 770 chia hết cho 7 và có 3 chữ số thỏa mãn và tổng các chữ số của số đó là 14
Tìm số tự nhiên chia hết cho 7 có 3 chữ số , biết rằng tổng các chữ số của số đó bằng 14
Tìm số tự nhiên N nhỏ nhất có 7 chữ số mà không có 2 chữ số nào giống nhau biết rằng N chia hết cho 7 và tổng các chữ số của nó cũng chia hết cho 7
Gọi số tự nhiên N cần tìm có dạng \(\overline{abcdefg}\). Gọi tổng các chữ số là A
Vì N ko có 2 chữ số nào giống nhau nên:
1+0+2+3+4+5+6\(\le\)A\(\le\)9+7+8+6+5+4+3 hay 21\(\le\)A\(\le\)42
Mà A chia hết cho 7 => A thuộc {21, 28, 35, 42}
Trước tiên xét A =21, Sắp xếp các số a, b, c, d, e, f với các số 0, 1,2, 3, 4, 5,6 thành các số tự nhiên
Theo đề bài N là số tự nhiên nhỏ nhất ta có số đàu tiên 1023456 thử lại thì thấy 1023456 chia hết cho 7
Vì thế ta ko cần xét các trường hợp khác nữa.
Đáp án số tự nhiên N là 1023456
\(266\)nha
Tìm các số tự nhiên có 3 chữ số, biết rằng: số đó là số chẵn, chia hết cho 11 và tổng các chữ số của nó cũng chia hết cho 11.
Gọi số cần tìm là ABC ( A>0 , A,B,C<10 )
Theo đề bài , ta có : ABC=11.(A+B+C)
A.100+B.10+C.1=11.A+11.B+11.C
A.89=B+C.10
Ta thấy B+C.10\(\le\)99 => A.89 \(\le\)99
=> A=1 vì nếu A bằng 2 thì 2.89 = 178 vậy A chỉ bằng 1 . Khi A=1 ta có :
B+C.10=89
Ta thấy C chỉ bằng 8 nếu C bằng 7 thì B sẽ là số có 2 chữ số . Vậy C=8
Khi C=8 ta có :
B+8.10=89
B+80=89
B=9
=> Ta có số 198
Cho số tự nhiên chia hết cho 7 có 3 chữ số trong đó chữ số hàng chục bằng chữ số hàng đơn vị . Chứng minh rằng tổng các chữ số của nó chia hết cho 7
Gọi số bị chia cho 7 là a .
Giả sử a là 777 , thì a chia hết cho 7 ; 7 + 7 + 7 = 21 chia hết cho 7 .
Nếu bạn nào thấy đúng , nhớ k cho mình nha !
Cho số tự nhiên chia hết cho 7 có 3 chữ số trong đó chữ số hàng chục bằng chữ số hàng đơn vị . Chứng minh rằng tổng các chữ số của nó chia hết cho 7
Câu hỏi của Hoàng Hoàng Long⁀ᶦᵈᵒᶫ⁀2k8 - Toán lớp 6 - Học toán với OnlineMath
Cho số tự nhiên chia hết cho 7 có 3 chữ số trong đó chữ số hàng chục bằng chữ số hàng đơn vị . Chứng minh rằng tổng các chữ số của nó chia hết cho 7
Câu hỏi của Hoàng Hoàng Long⁀ᶦᵈᵒᶫ⁀2k8 - Toán lớp 6 - Học toán với OnlineMath