Những câu hỏi liên quan
NO
Xem chi tiết
LB
29 tháng 3 2015 lúc 8:53

Do các ẩn x, y, z có vai trò đẳng lập, nên có thể giả sử 1\(\le\)x\(\le\)y\(\le\)z

=> xyz = 1 + x + y + z\(\le\)3z + 1

Bình luận (0)
LB
29 tháng 3 2015 lúc 9:02

Mình vội quá!!!

Viết tiếp nè,

xyz = 1 + x + y + z \(\le\)3z + 1\(\le\)4z           (Do 1\(\le\)z)

Chia hai vế cho z được xy\(\le\)4 => xy \(\in\){ 1; 2; 3; 4}

Với xy = 1 thì x = y = 1 => z = 3 + z (vô lí)

Với xy = 2 thì x = 1; y = 2 => z = 4

Với xy = 3 thì x = 1; y = 3 => z = 2,5 (loại)

Với xy = 4 thì x = 1; y = 4 => z = 2

Vậy (x; y; z) = (1; 2; 4) và các hoán vị của chúng 

Bình luận (0)
LB
29 tháng 3 2015 lúc 9:05

Sửa một chút, phần trên cùng phải là 1\(\le\)x\(\le\)y\(\le\)z, không phải là 1xyz

Dòng dưới của phần trên cùng bỏ vì nó ở dưới rồi. mong các bạn thông cảm vì mình vội quá

Bình luận (0)
H24
Xem chi tiết
TL
3 tháng 1 2015 lúc 22:35

không mất tính tổng quát, ta giả sử  \(0\le x\le y\le z\),

==> \(x+y+z\le z+z+z=3z\)==> \(xyz\le3z\Rightarrow xy\le3\Rightarrow xy\in\left\{1;2;3\right\}\)

Nếu xy=1 thì x=y=1 ==> z = 2+z vô lý (loại)

Nếu xy=2 ,do x=<y nên x=1,y=2 ==> 2z=3+z ==> z=3 (thoả mãn )

Nếu xy=3 do x=<y nên x=1;y=3 ==> 3z = 4+z==> z= 2 (Thoả mãn )

Vậy (x,y,z)=(1,2,3); (1,3,2);(2,1,3),(2,3,1); (3,1,2);(3,2,1)

Bình luận (0)
H24
30 tháng 12 2018 lúc 20:12

ahihi

Bình luận (0)
ZZ
22 tháng 1 2019 lúc 14:36

tớ công bố cách khác.

Không mất tính tổng quát,giả sử \(1\le x\le y\le z\)

Theo bài ra ta có:\(\frac{1}{yz}+\frac{1}{xy}+\frac{1}{zx}=1\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{x^2}+\frac{1}{x^2}\ge1\)

\(\Rightarrow\frac{3}{x^2}\ge1\)

\(\Rightarrow x^2\le3\)

\(\Rightarrow x=1\)(vì \(x,y,z\)nguyên dương)

Thay vào đề bài,ta có:

\(yz=1+y+z\)

\(\Rightarrow yz-y-z=1\)

\(\Rightarrow\left(y-1\right)\left(z-1\right)=2\)

Do y;z nguyên dương \(\Rightarrow\hept{\begin{cases}y\ge1\\z\ge1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}y-1\ge0\\z-1\ge0\end{cases}}\)

\(\Rightarrow\left(y-1\right)\left(z-1\right)=2\cdot1=1\cdot2\)

\(\Rightarrow\hept{\begin{cases}y=3\\z=2\end{cases};\hept{\begin{cases}y=2\\z=3\end{cases}}}\)

Vậy các cặp số nguyên dương (x;y;z) thỏa mãn là:\(\left(1;2;3\right)\)và các hoán vị của chúng.

Bình luận (0)
NC
Xem chi tiết
NH
Xem chi tiết
NN
3 tháng 4 2016 lúc 16:52

Trời khó thế Hằng

Bình luận (0)
NC
Xem chi tiết
NO
Xem chi tiết
NC
23 tháng 3 2015 lúc 20:04

Không tồn tại ba số nguyên dương trên vì

giả sử ba số x;y;z là số nguyên lẻ thì tích x.y.z là lẻ => x+y+z cũng lẻ => x+y+z+1 là chẵn

loại

Trường hợp 2: x;y;z là số nguyên dương chẵn thì trường hợp đây cũng loại 

Trường hợp 3: một trong ba số có một số chẵn thì ta dễ thấy hai vế đìều chẵn nhưng vế trái lớn hơn vế phải nên loại

Trường hợp 4 : một trong ba số có một số lẻ ta phân tích như trường hợp 3 thì nhận kết là loại

lưu ý các trường hợp trên các số nguyên x;y;z có thể bằng nhau

Bình luận (0)
GP
Xem chi tiết
ND
Xem chi tiết
SS
4 tháng 1 2016 lúc 20:17

1+2+3=1.2.3

1+2+3=6

1.2.3=6

 

Bình luận (0)
KW
4 tháng 1 2016 lúc 20:16

6...........

Tik cho mk nha..............cảm ơn rất nhiều

Bình luận (0)
KK
Xem chi tiết
VT
25 tháng 7 2016 lúc 10:10

 Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z. 
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 
=> xy thuộc {1 ; 2 ; 3}. 
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí. 
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3. 
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2. 
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).

Bình luận (2)
NT
25 tháng 7 2016 lúc 10:12

 Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z. 
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 
=> xy thuộc {1 ; 2 ; 3}. 
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí. 
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3. 
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2. 
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).

Bình luận (0)
H24
23 tháng 8 2017 lúc 12:11

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Bình luận (0)