Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
YD
Xem chi tiết
NG
Xem chi tiết
6R
2 tháng 12 2017 lúc 12:23

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

Bình luận (0)
HL
Xem chi tiết
NB
Xem chi tiết
KT
Xem chi tiết
TL
Xem chi tiết
H24
6 tháng 11 2019 lúc 21:07

1

gọi số cần tìm là p.dễ thấy p lẻ

=>p=a+2 và p=b-2

=>a=p-2 và b=p+2

vì p-2,p,p+2 là 3 số lẻ liên tiếp nên có một số chia hết cho 3

với p-2=3=>p=5=7-2(chọn)

p=3=>p=1+2(loại)

p+2=3=>p=1(loại)

vậy p=5

2

vì p1, p2, p3 là 3 số nguyên tố (SNT) > 3 
theo giả thiết: 
p3 = p2 + d = p1 + 2d (*) 
=> d = p3 - p2 là số chẵn ( vì p3, p2 lẻ) 
đặt d = 2m, xét các trường hợp: 
* m = 3k => d chia hết cho 6 
* m = 3k + 1: khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 2 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 4 
do p1 là SNT > 3 nên p1 chia 3 dư 1 hoặc 2 
nếu p1 chia 3 dư 1 => p2 = p1 + 6k + 2 chia hết cho 3 => p2 là hợp số (không thỏa gt) 
nếu p1 chia 3 dư 2 => p3 = p1 + 12k + 4 chia hết cho 3 => p3 là hợp số (---nt--) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 1 
* m = 3k + 2, khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 4 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 8 
nếu p1 chia 3 dư 1 => p3 = p1 + 12k + 8 chia hết cho 3 => p3 là hợp số (không thỏa gt) 
nếu p 1 chia 3 dư 2 => p2 = p1 + 6k + 4 chia hết cho 3 => p2 là hợp số ( không thỏa gt) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 2 
vậy để p1, p 2, p 3 đồng thời là 3 SNT thì m = 3k => d = 2m = 6k chia hết cho 6.

3

ta có p,p+1,p+2 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.

mà p,p+2 là SNT >3 nên p,p+2 ko chia hết cho 3 và là số lẻ

=>p+1 chia hết cho 3 và p+1 chẵn=>p+1 chia hết cho 6

4

vì p là SNT >3=>p=3k+1 hoặc p=3k+2

với p=3k+1=>p+8=3k+9 chia hết cho 3

với p=3k+2=>p+4=3k+6 ko phải là SNT

vậy p+8 là hợp số

5

vì 8p-1 là SNt nên p>3=>8p ko chia hết cho 3

vì 8p,8p+1,8p-1 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.mà 8p,8p-1 là SNT >3=>8p+1 chia hết cho 3 và 8p+1>3

=>8p+1 là hợp số

6.

Ta có: Xét:

+n=0=>n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15(hợp số,loại)

+n=1

=>n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16(hợp số,loại)

+n=2

=>n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17(hợp số,loại)

+n=3

=>n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18(hợp số,loại)

+n=4

n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19(SNT,chọn)

Nếu n>4 sẽ có dạng 4k+1;4k+2;4k+3

+n=4k+1

⇔n+3=4k+1+3=4k+4⇔n+3=4k+1+3=4k+4(hợp số,loại)

+n=4k+2

=>n+13=4k+2+13=4k+15n+13=4k+2+13=4k+15(hợp số,loại)

+n=4k+3

=>n+3=4k+3+3=4k+6n+3=4k+3+3=4k+6(hợp số,loại)

⇔n=4

Bình luận (0)
 Khách vãng lai đã xóa
NC
12 tháng 3 2022 lúc 14:44

4.vì p là số nguyên tố >3

nên p có dạng 3k+1;3k+2

xét p=3k+1 ta có :p+4=(3k+1)+4=3k+5(thỏa mãn)

xét p=3k+2 ta có: p+4=(3k+2)+4=3k+6 chia hết cho 3(trái với đề bài)

vậy p+8=(3k+1)+8=3k+9 chia hết cho 3

Vậy p+8 là hợp số

 

Bình luận (0)
BT
11 tháng 8 2024 lúc 9:26

1. Gọi số M là số lẻ, Q là số chẵn, nguyên tố cần tìm là P ( P ≠ 2 vì 2 là số nguyên tố chẵn duy nhất, nhỏ nhất nên không thể là tổng) 

- P = A + 2 ( M + Q = M )

- P = B - 2 ( M - Q = M )

- A = P - 2; B = P +  2 

P + 2; P; P - 2 ⇒ 3 số lẻ liên tiếp.

- P ≠ 1 vì P là số nguyên tố.

- P ≠ 2 vì 2 là số nguyên tố chẵn duy nhất, nhỏ nhất nên không thể là tổng.

- P ≠ 3 vì 3 = A + 2; 3 = 1 + 2 ( 1 không phải là số nguyên tố )

- P = 5 vì A + 2 = 5 = B - 2

               3 + 2 = 5 = 7 - 2

⇒ P = 5

Bình luận (0)
NA
Xem chi tiết
BQ
6 tháng 12 2017 lúc 19:39

không biết

Bình luận (0)
BY
Xem chi tiết
OO
29 tháng 3 2016 lúc 7:48

ta chứng minh : A = 1!+2!+...+n! ko phải là số chính phương

ta có: 1!+2!+3!+4! chia 10 dư 3

5!+6!+...+n! chia hết cho 10

vậy A chia 10 dư 3 => A ko phải là số chính phương nên A ko thể là lũy thừa vs số mũ chẵn (1)

* chứng minh A ko thể là lũy thừa vs số mũ lẻ

+) với n 4 => 1!+2!+3!+4! = 33 ko là lũy thừa 1 số nguyên

+) n lớn hơn hoặc bằng 5

ta có: 1!+2!+3!+4!+5! chia hết cho 9

6!+7!+...+n! chia hết cho 9

=> A chia hết cho 9

+) ta thấy 9!+10!+...+n! chia hết cho 7

còn 1!+2!+...+8! chia 27 dư 9 (2)

từ (1) và (2) => A ko phải là lũy thừa của 1 số nguyên ( vs n>3 ; b>1 )

Bình luận (0)
CC
Xem chi tiết
TL
6 tháng 6 2015 lúc 19:38

+) Nếu n chẵn , Viết n dạng n = 2 + m ; m chẵn và > 3

+) Nếu n lẻ, Viết n dạng n = 3 + m ; m chẵn và > 2

Theo mệnh đề EuLer: Mọi số chẵn lớn hơn 2 đều biểu diễn được dưới dạng tổng của 2 số nguyên tố

=> Nếu n chẵn hay lẻ thì luôn biểu diễn được dưới dạng tổng của 3 số nguyên tố

*) Tuy nhiên, mệnh đề EuLer hiện tại chưa được giải quyết trọn vẹn. Bài này đưa ra nếu giả sử đã chứng minh mệnh đề EuLer! 

Bình luận (0)
DV
6 tháng 6 2015 lúc 17:34

.... Chưa biết làm ....

Bình luận (0)
TQ
6 tháng 6 2015 lúc 17:57

Nếu cho n=3 thì 3>5 chắc

Bình luận (0)