cho tam giac abc co goc a =2 *goc bva goc b =2* goc c .chung minh bc^2=ac^2+ac*ab
cho tam giac ABC co goc A = 90 do va BC = 2 * AB ; E la trung diem cua BC . tia phan giac cua goc B cat canh AC o D
A ) chung minh DB la phan giac cua goc ADE
B ) chung minh BD = DC
C) tinh goc B , goc C cua tam giac ABC
cho tam giac ABC co goc C nho nhat. Tu B ve 1 duong thang song song voi phan giac AD cua goc BAC, duong nay cat AC tai E .
a) Chung minh goc BAC la goc nhon
b) Chung minh tam giac ABE co 2 goc bang nhau
c)Goi M la trung diem BE. Chung minh tam giac AMB=tam giac AME va AM vuong goc voi BE
d)Ke BH vuong goc voi AC, O la giao diem cua AD voi BH biet goc A=2 goc B. Tinh goc HOD
bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm
Cho ∆ ABC vuong tai A, ke duong phan giac BK cua goc B. Duong tang di qua A va vuong goc voi BK cat BC tai H.
a, chung minh BA=BH
b, chung minh ∆BHK la ∆ vuong
So sanh AK va KC
Gia su goc C = 30°. Tam giac ABH la tam giac gi? Vi sao?
Bai 2 cho ∆ABC can tai A (AB=AC), BH vuong goc voi AC. Chung minh goc BAC =2 goc CBH.
a, gọi I là giao điểm của AH và BK
xét tam giácABI và tam giác HBI có
BI cạnh chung
\(\widehat{ABI}\)=\(\widehat{HBI}\)(gt)
\(\Rightarrow\)tam giác ABI= tam giác HBI (cạnh góc vuông-góc nhọn)
suy raBA=BH
b, xét tam giác ABK và tam giác HBK có
AB=BH
\(\widehat{ABK}\)=\(\widehat{HBK}\)(gt)
BK cạnh chung
suy ra tam giác ABK=tam giac HBK(c.g.c)
\(\Rightarrow\)\(\widehat{A}\)=\(\widehat{BHK}\)=90 độ suy ra tam giác BHK vuông
c,vì AB=BH nên tam giác ABH là tam giác cân tại B
Bài 2.
Tam giác BHC vuông tại H
=> \(\widehat{CBH}=90^o-\widehat{BCH}\)
=> 2\(\widehat{CBH}=180^o-2.\widehat{BCH}=180^o-2.\widehat{BCA}\)(1)
Ta lại có: \(\widehat{BAC}=180^o-\left(\widehat{ABC}+\widehat{BCA}\right)=180^o-2.\widehat{BCA}\)(2)vì tam giác ABC cân tại A
Từ (1), (2)=> dpcm
Cho tam giac ABC co 3 goc nhon , AB = AC . Goi M la trung diem cua BC
a) Chung minh tam giac ABM = tam giac ACM
b) Tren tia doi tia MA lay diem E sao cho MA = ME . Chung minh AC // BE
c) ke BH vuong goc AC tai H . CK vuong goc Be tai K . Chung minh goc ABH = goc ECK
a) ta có AB=AC
=> TAM GIÁC ABC CÂN TẠI A
=> B=C
XÉT TAM GIÁC ABM VÀ TAM GIÁC ACM CÓ
AB = AC(GT)
B = C (CMT)
BM=MC(M LÀ TRUNG ĐIỂM CỦA BC)
=> TAM GIÁC ABM = TAM GIÁC ACM (C-G-C)
B) XÉT \(\Delta AMC\)VÀ \(\Delta EMB\)CÓ
\(BM=MC\left(GT\right)\)
\(\widehat{AMC}=\widehat{EMB}\)(ĐỐI ĐỈNH)
\(MA=ME\left(GT\right)\)
\(\Rightarrow\Delta AMC=\Delta EMB\left(C-G-C\right)\)
\(\Rightarrow\widehat{BEA}=\widehat{CAE}\)HAI GÓC TƯƠNG ỨNG
HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU
\(\Rightarrow AC//BE\)
cho tam giac ABC co AB< AC co 3 goc nhon . Ke AH vuong goc BC tai H . Ve ra phia ngoai tam giac ABC cac doan thang BD vuong goc AB , BD = AB ; CE vuong goc AC , CE= AC . Ke DM vuong goc BC tai M ; EN vuong goc BC tai N
a, so sanh :goc DBM va goc BAH ; goc ECN va goc CAH
b, chung minh DM = BH , EN = CH
ve hinh r chung minh theo truong hop 2 cgv
1 cho tam giac abc can a , goc a bang 40 do lay d khac phia b so voi ac thoa man goc cad bang 60 do goc cad bang 80 do chung minh bd vuong goc voi ac
2 cho tam giac abc vuong can a . d la diem bat ki tren ab. tren nua mat phang bo ab tu c ve tia bx sao cho goc abx bang 135 do. duong thang vuong goc voi dc ve tu d cat bx o e . chung minh tam giac dec vuong can
3 cho tam giac abc can b goc abc bang 80 do , i la diem trong tam giac sao cho goc iac bang 10 do, ica bang 30 do tinh goc abi
4 cho tam giac abc can a co goc a bang 100 do , bc =a, ac =b ve phia ngoai tam giac abc ve tam giac abd can d co goc adb bang 140 do tinh ch vi tam giac adb theo a,b
ve hinh gium minh voi , xin mn day
cho tam giac can ABC co AB=AC=5 cm, BC=8 cm . Ke AH vuong goc voi BC(h thuoc BC)
a) Chung minh : HB =HC va goc CAH= goc BAH; b) Tinh do dai AH
c) Ke HD vuong goc voi AB ( D thuoc AB), ke HE vuong goc voi AC(E thuoc AC). Chung minh : DE//BC
a) Xét 2 tam giác vuông AHB và tam giác AHC có:
AB = AC (gt)
AH là cạnh chung
=> tam giác AHB = tam giác AHC (cạnh huyền - cạnh góc vuông)
=>HB = HC (2 cạnh tương ứng)
=> góc A1= góc A2 (2 góc tương ứng)
b) Ta có : BC = HB + HC
mà HB = HC (cmt)
BC = 8 (cm)
=> HB = HC = BC/2 = 8/2= 4 (cm)
Xét tam giác AHB vuông tại H áp dugj định lí Pitago có:
AB^2 = AH^2 + HB^2
hay 5^2 = AH^2 + 4^2
=> AH = 5^2 - 4^2 =25 - 16= 9
=> AH = căn bậc 2 của 9 = 3 (cm)
c)Xét 2 tam giác vuông BHD và tam giác CHE có:
HB = HC (cmt)
Góc B = góc C ( vì tam giác ABC cân tại A)
=> tam giác BHD = tam giác CHE (cạnh huyền - góc nhọn)
=> BD= CE (2 cạnh tương ứng)
Xét 2 tam giác ADI và tam giác AEI có:
góc A1 = góc A2 (cmt)
AI là cạnh chung
AD =AE ( vì AB = AC; BD = CE)
=> tam giác ADI = tam giác AEI (c-g-c)
=> góc I1 = góc I2 (2 góc tương ứng)
mà góc I1 + góc I2 = 180 độ
=> góc I1 = góc I2 = 180/ 2= 90 (độ)
=> AI vuông góc với DE
=> AH cũng vuông góc với DE
mặt khác: AH lại vuông góc với BC
=> DE // BC (đpcm)
CHO TAM GIAC ABC CAN TAI A, CO AB=AC=5CM, BC=8CM. KE AH VUONG GOC BC(H THUOC BC)CHUNG MINH
A) HB=HC VA GOC BAH=GOC CAH
B) TINH AH
C) GOI D VA E LA CHAN DUONG VUONG GOC KE TU H DEN AB VA AC CHUNG MINH TAM GIAC HDE CAN
1. Cho hinh thang ABCD , phan giac cua goc A cat duong cheo BD tai E va phan giac goc B cat AC tai F . Chung minh EF //AB?
2.Cho tam giac ABC , cac tia phan giac cua goc B va goc C cat nhau tai O . Tu A ve duong thang vuong goc voi OA cat BO , CO lan luot tai M va N . Chung minh BM vuong goc voi BN , CM vuong goc voi CN?
3.Cho goc vuong xOy ,vaf tam giac ABC vuong tai A (B thuoc Ox ,AC thuoc Oy,A va O nam tren hai nua mat phang doi nhau co bo la BC ).chung minh OA la tia phan gic cua xOy ?
cac ban giup mik nha