tồn tại hay không số tự nhiên x thỏa mãn số \(20^{2x}+12^{2x}+2012^{2x}\) là số chính phương
Tồn tại hay không số tự nhiên x thỏa mãn số: 202x+122x+20122x là số chính phương
Với \(x\inℕ\)
\(202x+122x+20122x=20446x\)
Tất nhiên là có: \(x=20446\) chẳng hạn \(\left(20446x=20446\cdot20446=20446^2\right)\)
Mình không biết đề bài trên có đúng hay không.
Tồn tại hay không số tự nhiên x thỏa mãn số \(20^{2x}+12^{2x}+2012^{2x}\) là một số chính phương.
giúp mình với
ta có: 202x có tận cùng là 0
122x = 144x ; 20122x = 4048144x
xét x = ak + 1 thì ta có: 1442k+1= 1442k * 144 = 20726k * 144 có tận cùng là 4
40481442k+1 = (...6)2 * 4048144 có tận cùng là 4
=> số đã cho tận cùng là 8 ko phải là số chính phương (1)
xét x = 2k thì ta có: 1442k = 20736k có tận cùng là 6
40481442k = (...6)k có tận cùng là 6
=> số đã cho có tận cùng là 2 ko phải số chính phương (2)
từ (1) và (2) => ko có số x
Có hay không số tự nhiên x thỏa mãn số 202x + 122x + 20122x là một số chính phương ?
1) Tồn tại hay không số nguyên x thỏa mãn 202x + 122x + 20152x là một số chính phương.
2) Cho n là một số nguyên dương và n số nguyên dương a1 , a2 , a3 , …, an có tổng bằng 2n - 1. Chứng minh rằng tồn tại một số số trong n số đã cho có tổng bằng n.
20^2x có tận cùng là 0
12^2x=144^x;2012^2x=4048144^x
xét x=2k+1 thì ta có: 144^(2k+1)=144^2k*144=20726^k*144 có tận cùng là 4
4048144^(2k+1)=(...6)^2*4048144 có tận cùng là 4
suy ra số đã cho có tận cùng là 8 không phải là số chính phương (1)
xét x=2k thì ta có:144^2k=20736^k có tận cùng là 6
4948144^2k=(...6)^k có tận cùng là 6
suy ra số đã cho có tận cùng là 2 không phải là số chính phương (2)
từ(1) và (2) suy ra không tồn tại số x
Đinh Tuấn việt chép mạng thề luôn!
nếu x = 2k thì 2015^2x = 4060225^x chứ không phải là 4048144^x nha
Nếu mún bt hãy xem dòng thứ 2 của lời giải của bạn ấy có ghi là
2012^2x = 4048144^x
Nhưng đề bài lại nói là 2015^2x cơ mà ??
Tìm x để mệnh đề chứa biến sau đúng:
a) “ x là số chính phương và 3 < x < 20
b) “ x là số tự nhiên và x2+2x-3=0 "
c) “ x là số nguyên âm thỏa mãn x2≤4
a. \(x=\left\{4;9;16\right\}\)
b. \(x=1\)
c. \(x=\left\{-2;-1\right\}\)
Bài 8. Cho số nguyên dương n. Tồn tại hay không số nguyên dương d thỏa mãn: d là ước của 3n^2 và n^2 +d là số chính phương. Bài 9. Chứng minh rằng không tồn tại hai số nguyên dương x, y thỏa mãn x^2 +y+1 và y^2 +4x+3 đều là số chính phương.
Ai đó giúp mình đi mòaa🤤🤤🤤
_Chứng minh rằng không tồn tại số tự nhiên x và y khác 0 thỏa mãn x^2 + y và x+y^2 là số chính phương
tìm hai số tự nhiên x;y thoả mãn (2x-y)(x+y+1)=x^2 CMR (2x-y) là số chính phương
Gọi \(ƯC\left(2x-y;x+y+1\right)=d\left(d\in N\right)\)
\(\Rightarrow2x-y⋮d,x+y+1⋮d\)
\(\Rightarrow\left(2x-y\right)\left(x+y+1\right)⋮d^2\Rightarrow x^2⋮d^2\Rightarrow x⋮d\) (1)
Mặt khác, \(2x-y+x+y+1⋮d\Rightarrow3x+1⋮d\) (2)
Từ (1) và (2) ta được: \(3x+1-3x⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy 2x - y và x + y + 1 là 2 số nguyên tố cùng nhau.
Mà \(\left(2x-y\right)\left(x+y+1\right)\) là số chính phương
Nên 2x - y và x + y + 1 là 2 số chính phương.
a, có hay không ác số tự nhiên x, y thỏa mãn : (x+y)(x-y)=2014
b, có hay không các số tự nhiên x thỏa mãn x(x+1)(x+2)=2012
c, có hay không các số tự nhiên x, y thỏa mãn : (x+y)(x-y)=2011
d , có không các số tự nhiên x, y thỏa mãn : (x+y)(x-y)=2013