Những câu hỏi liên quan
DM
Xem chi tiết
BU
Xem chi tiết
HH
Xem chi tiết
AH
29 tháng 12 2021 lúc 8:24

Lời giải:

\(a=\underbrace{111....1}_{2n}; b=\underbrace{22....2}_{n}\)

Đặt \(\underbrace{11...11}_{n}=a\Rightarrow 10^n=9a+1\)

Khi đó:

\(a-b=\underbrace{11...1}_{n}\underbrace{000...0}_{n}+\underbrace{11...1}_{n}-2.\underbrace{11...1}_{n}\)

\(=a(9a+1)+a-2a=9a^2=(3a)^2\) là số chính phương. Ta có đpcm.

Bình luận (0)
PY
Xem chi tiết
HM
Xem chi tiết
NM
29 tháng 12 2021 lúc 9:06

\(a=111...1=\frac{10^{2n}-1}{9}=\frac{10^{2n}}{9}-\frac{1}{9}\)

\(b=222...2=\frac{2\left(10^n-1\right)}{9}=\frac{2.10^n}{9}-\frac{2}{9}\)

\(a-b=\frac{10^{2n}}{9}-\frac{1}{9}-\frac{2.10^n}{9}+\frac{2}{9}=\left(\frac{10^n}{3}\right)^2-2.\frac{10^n}{3}.\frac{1}{3}+\left(\frac{1}{3}\right)^2=\)

\(=\left(\frac{10^n}{3}-\frac{1}{3}\right)^2\) Là 1 số chính phương

Bình luận (0)
 Khách vãng lai đã xóa
HM
Xem chi tiết
VT
Xem chi tiết
NH
Xem chi tiết
PA
4 tháng 4 2015 lúc 10:10

1.Mính ko bik

2.ko biik

3.20

 

Bình luận (0)
CH
12 tháng 12 2016 lúc 12:10

cau 3 =2

100%

Bình luận (0)
VQ
22 tháng 11 2018 lúc 19:40

n=100

Bình luận (0)
ND
Xem chi tiết
TL
9 tháng 11 2015 lúc 21:56

a,Gọi a là một số nguyên bất kỳ => a có dạng 2k hoặc 2k+1 (k\(\in\)Z)

Xét a = 2k=>\(a^2\)=\(\left(2k\right)^2\)=\(4k^2\)=>\(a^2\) chia 4 dư 0

Xét a= 2k+1=>\(a^2\)=\(\left(2k+1\right)^2\)=\(4k^2\)\(+\)\(4k+1\)=>\(a^2\) chia 4 dư 1

Vậy số chính phương khi chí cho 4 dư 0 hoặc 1.

Bình luận (0)