Chứng tỏ rằng tổng của các phân sau lớn hơn 1/2
s=1/50+1/51+1/52+...+1/98+1/99
Chứng tỏ rằng tổng của các phân số sau đây lớn hơn \(\frac{1}{2}\)
\(S=\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+....+\frac{1}{98}+\frac{1}{99}\)
mấy bn ơi giải giúp mik nhak
cho tổng S=1+2+2 mũ 2+2 mũ 3 +......+2 mũ 98+2 mũ 99
chứng tỏ rằng S chia hết cho15
\(S=1+2+2^2+2^3+...+2^{99}\)
\(=\left(1+2+2^2+2^3\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}\right)\)
\(=\left(1+2+4+8\right)+...+2^{96}.\left(1+2+2^2+2^3\right)\)
\(=15+...+2^{96}.15\)
\(=15.\left(1+...+2^{96}\right)⋮15\)
\(\Rightarrow\) \(S⋮15\)
Chứng minh rằng: trong 1 tứ giác tổng 2 đường chéo lớn hơn nửa chu vi của tứ giác ấy
Hãy chứng tỏ rằng tổng các phân số sau đây lớn hơn 1/2:
S= 1/50 + 1/51 + 1/52 + ... + 1/98 + 1/99.
Ta có S = \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{74}+\frac{1}{75}+\frac{1}{76}+\frac{1}{77}+...+\frac{1}{99}\)
\(=\left(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{74}\right)+\left(\frac{1}{75}+\frac{1}{76}+\frac{1}{77}+...+\frac{1}{99}\right)\)
25 số hạng 25 số hạng
\(>\left(\frac{1}{75}+\frac{1}{75}+...+\frac{1}{75}\right)+\left(\frac{1}{100}+\frac{1}{100}+....+\frac{1}{100}\right)\)
\(=25.\frac{1}{75}+25.\frac{1}{100}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)(ĐPCM)
Vậy S > 1/2
Chứng tỏ rằng tổng của các phân số sau đây lớn hơn 1/2:
S=1/50+1/51+1/52+...+1/98+1/99
ta có:1/50>1/100
1/51>1/100
...............
1/99>1/100
=>S>50*1/100
=>S>1/2(đpcm)
1/50>1/100
1/51>1/100
...................
1/99>1/100
=>S>50*1/100(do từ 1/50 đến 1/99 có 50 số hạng)
=>S>1/2
EM có thể tham khảo video này:
https://www.youtube.com/watch?v=fBjsHQKClNA&index=7&list=PLq0mRSDfY0BAMTu98fNHi-Lg_E9BWDYhV
1 Cho 2 số tự nhiên liên tiếp,chungwstor rằng tổng của chúng luôn là 1 số chẵn
2, Chứng tỏ rằng ab . 101 =abab
Hãy ghi rõ lời giải ra nhe các bạn ^^
theo quy ước thì .11 thì bằng tổng các số ở giữa nên tương tự với nó
còn câu 1 thì là chăn+chẵn =chẵn;
số đó là
11
chắc vậy
thôi bn đừng
ghi vội
Chứng tỏ rằng tổng của các phân số sau đây lớn hơn 1/2
S=1/50+1/51+1/52+...+1/98+1/99.
1) chứng tỏ tổng 41/90+ 31/72+ 21/40+ -11/45+ -1/36 lớn hơn 1
2) Cho S = 1/5 + 1/6 + ..... + 1/16 + 1/17 .chứng tỏ 1<S<2
Chứng tỏ rằng:(x+1)^2/4 lớn hơn hoặc bằng x
Ta cần chứng minh:\(\frac{\left(x+1\right)^2}{4}\ge x\)
Thật vậy: \(\left(x-1\right)^2\ge0\)
\(\Leftrightarrow x^2-2x+1\ge0\)
\(\Leftrightarrow x^2+2x+1\ge4x\)
\(\Leftrightarrow\left(x+1\right)^2\ge4x\)
\(\Leftrightarrow\frac{\left(x+1\right)^2}{4}\ge x\)(đpcm)