1/4+1/28+/1/70+...+1/9700=0,33x/2009
\(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+...+\frac{1}{9700}=\frac{0,33x}{2009}\)
\(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+...+\frac{1}{9700}=\frac{0,33x}{2009}\)
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}=\frac{0,33x}{2009}\)
\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}=\frac{0,33x}{2009}\)
\(\frac{1}{1}-\frac{1}{100}=\frac{0,33x}{2009}\)
\(\frac{100}{100}-\frac{1}{100}=\frac{0,33x}{2009}\)
\(\frac{99}{100}=\frac{0,33x}{2009}\)
\(\Rightarrow2009.99=100.0,33x\)
\(\Rightarrow2009.99=33x\)
\(\Rightarrow2009.99:33=x\)
\(\Rightarrow2009.3=x\)
\(\Rightarrow6027=x\)
Vậy \(x=6027\)(MK KO CHẮC NÓ ĐÚNG NHÉ )
Tim x:
\(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+....+\frac{1}{9700}=\frac{0,33x}{2009}\)
\(\frac{3}{1.4}+\frac{3}{4.7}+..+\frac{3}{97.100}=\frac{0,33x}{2009}\)
\(1-\frac{1}{4}+\frac{1}{4}-...-\frac{1}{100}=\frac{0,33x}{2009}\)
\(1-\frac{1}{100}=\frac{0,33x}{2009}\)
\(\frac{99}{100}=\frac{0,33x}{20009}\Rightarrow2009.99=100.0,33x\)
x=6027
Mọi ngừi giúp Natasha với.
\(\frac{1}{4}+\frac{1}{28}+...+\frac{1}{9700}=\frac{0,33x}{2009}\)
Ai xong đầu tiên thì Tasha sẽ tick cho nha.
Iu mn nhìu.
Ta có : \(\frac{1}{4}+\frac{1}{28}+....+\frac{1}{9700}=\frac{0,33x}{2009}\)
=> \(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{97.100}=\frac{0.99x}{2009}\)
=> \(\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)=\frac{0,33x}{2009}\)
=> \(\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)=\frac{0,33x}{2009}\)
=> \(\frac{1}{3}\left(1-\frac{1}{100}\right)=\frac{0,33x}{2009}\)
=> \(\frac{33}{100}=\frac{0,33x}{2009}\Rightarrow33.2009=100.0,33x\)
=> 33.2009 = 33x
=> x = 2009
Thanks bn nhìu nha, mình sẽ K cho bn ngay. Bn kb với mình nha.
M=1/4+1/28+1/70+1/130+...+1/9700
\(3M=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\)
\(3M=\frac{4-1}{1.4}+\frac{7-4}{4.7}+...+\frac{100-97}{97.100}\)
\(3M=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)
\(3M=1-\frac{1}{100}\)
\(3M=\frac{99}{100}\)
\(M=\frac{33}{100}\)
Tính nhanh:
\(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+...+\frac{1}{9700}\)
A = 1/4 + 1/28 + 1/70 +...+ 1/9700
A = 1/1.4 + 1/4.7 + 1/7.10 +...+ 1/97.100
3A = 3/1.4 + 3/4.7 + 3/7.10 +...+ 3/97.100
3A = 1 - 1/100
3A = 99/100
A=99/100:3=33/100
\(=\frac{1}{1.4}+\frac{1}{4.7}+..+\frac{1}{97.100}\)
\(=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{100}\right)\)
\(=\frac{1}{3}.\frac{99}{100}=\frac{33}{100}\)
= \(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{97.100}\)
= \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)
= \(\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
= \(\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{100}\right)\)
= \(\frac{1}{3}.\frac{99}{100}\)
=\(\frac{33}{100}\)
Tính nhanh tổng số
\(\frac{1}{4}\)+ \(\frac{1}{28}\)+ \(\frac{1}{70}\)+ \(\frac{1}{130}\)+ ... + \(\frac{1}{9700}\)
\(A=\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+\frac{1}{130}+...+\frac{1}{9700}\)
\(A=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{97.100}\)
\(A=\frac{3}{3}\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{97.100}\right)\)
\(A=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{97.100}\right)\)
\(A=\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=\frac{1}{3}\left(1-\frac{1}{100}\right)\)
\(A=\frac{1}{3}.\frac{99}{100}=\frac{33}{100}\)
\(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+\frac{1}{130}+...+\frac{1}{9700}\)
\(=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}\)
\(=\frac{100}{100}-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+...+\frac{1}{9700}\)
\(=\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{97.100}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
tính nhanh:
A=2/4+2/28+2/70+...+2/9700
giải ra hộ mình
\(\dfrac{3}{2}xA=\dfrac{3}{1x4}+\dfrac{3}{4x7}+\dfrac{3}{7x10}+...+\dfrac{3}{97x100}=\)
\(=\dfrac{4-1}{1x4}+\dfrac{7-4}{4x7}+\dfrac{10-7}{7x10}+...+\dfrac{100-97}{97x100}=\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}=\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\Rightarrow A=\dfrac{99}{100}x\dfrac{2}{3}=\dfrac{33}{50}\)
1 căn phòng có nền nhà là 1 hình chữ nhật có chu vi là 36 m, chiều dài hơn chiều rộng 2 m.
A)tính diện tích của căn phòng đó?
B)người ta dùng gạch hoa hình vuông có cạnh là 40 m để lát nền nhà.Hỏi số viên gạch cần để lát nền nhà là bao nhiêu?
Tính nhanh:A=1/4+1/28+1/70+1/130+...+1/9700
Bạn nào trả lời nhanh nhất và đúng nhất mình tích cho
(1/1*4+1/4*7+1/7*10+.....+1/97*100)=0,33x/2014
=> 3/1.4+3/4.7+.....+3/97.100 = 0,99x/2014
=> 1-1/4+1/4-1/7+....+1/97-1/100 = 0,99x/2014
=> 0,99x/2014 = 1-1/100 = 99/100
=> x = 99/100 : 0,99/2014 = 2014
Vậy x = 2014
Tk mk nha