Những câu hỏi liên quan
NT
Xem chi tiết
NH
16 tháng 2 2017 lúc 23:24

C>D, chắc chắn đó

Bình luận (0)
NH
Xem chi tiết
NT
Xem chi tiết
PQ
4 tháng 3 2018 lúc 16:05

Bạn tham khảo nhé 

Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\) \(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(C=\frac{100^{100}+1}{100^{90}+1}< \frac{100^{100}+1+99}{100^{90}+1+99}=\frac{100^{100}+100}{100^{90}+100}=\frac{100\left(100^{99}+1\right)}{100\left(100^{89}+1\right)}=\frac{100^{99}+1}{100^{89}+1}=D\)

Vậy \(C< D\)

Bình luận (0)
PQ
4 tháng 3 2018 lúc 16:18

àk bạn ơi mk nhầm : 

Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)

\(\frac{a}{b}>\frac{a+c}{b+c}\)\(\left(\frac{a}{b}>1;a,b,c\inℕ^∗\right)\)

Áp dụng công thức thứ hai ta có : 

\(C=\frac{100^{100}+1}{100^{90}+1}>\frac{100^{100}+1+99}{100^{90}+1+99}=\frac{100^{100}+100}{100^{90}+100}=\frac{100\left(100^{99}+1\right)}{100\left(100^{89}+1\right)}=\frac{100^{99}+1}{100^{89}+1}=D\)

Vậy \(C>D\) ( vầy mới đúng ) 

Bình luận (0)
NT
28 tháng 2 2019 lúc 22:32

         C < D đúng 100 %

Bình luận (0)
TH
Xem chi tiết
TH
30 tháng 1 2018 lúc 21:45

Các bạn nhớ giải chi tiết nha và ghi cả công thức cho mình nhé

Bình luận (0)
KN
Xem chi tiết
TD
25 tháng 2 2017 lúc 20:42

A = \(\frac{100^{100}+1}{100^{90}+1}\)

\(\frac{1}{100^{10}}A=\frac{100^{100}+1}{100^{100}+100^{10}}\)

\(\frac{1}{100^{10}}A=\frac{100^{100}+100^{10}-100^{10}+1}{100^{100}+100^{10}}\)

\(\frac{1}{100^{10}}A=1+\frac{-100^{10}+1}{100^{100}+100^{10}}\)

B = \(\frac{100^{99}+1}{100^{89}+1}\)

\(\frac{1}{100^{10}}B=\frac{100^{99}+1}{100^{99}+100^{10}}\)

\(\frac{1}{100^{10}}B=\frac{100^{99}+100^{10}-100^{10}+1}{100^{99}+100^{10}}\)

\(\frac{1}{100^{10}}B=1+\frac{-100^{10}+1}{100^{99}+100^{10}}\)

Vì \(\frac{-100^{10}+1}{100^{100}+100^{10}}< \frac{-100^{10}+1}{100^{99}+10^{10}}\)nên A < B

Bình luận (0)
DH
Xem chi tiết
PP
Xem chi tiết
NV
Xem chi tiết
IY
Xem chi tiết
PC
1 tháng 3 2018 lúc 15:38

Mik cũng gặp bài giống y như bạn nhưng ko giải đc đây. Bạn nào biết vào giúp chúng mình đi.

Bình luận (0)
NN
29 tháng 12 2018 lúc 7:46

A=\(\frac{100^{100}+1}{100^{99}+1}< \frac{\left(100^{100}+1\right)+99}{\left(100^{90}+1\right)+99}=\frac{100^{100}+100}{100^{90}+100}=\frac{100\left(100^{99}+1\right)}{100\left(100^{89}+1\right)}=\frac{100^{99}+1}{100^{89}+1}\)

Vì \(\frac{100^{99}+1}{100^{89}+1}=\frac{100^{99}+1}{100^{89}+1}\)

Nên A=B

Bình luận (0)