Cho 2 góc xOy và yOz là 2 góc kề bù sao cho: 4.xOy = 5.yOz
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho góc xOy và góc yOz là hai góc kề bù. Biết góc xOy chia 5 bằng góc yOz chia 4. Tính góc xOy, góc yOz
Cho 2 góc xOy và yOz là 2 góc kề bù . Biết yOz = 5 xOy
a , tính góc xOy và yOz
b, Gọi Om là tia phân giác của yOz . Tính góc xOm
Giải
a) +) Tính \(\widehat{xOy}\)
Theo đề bài, ta có: \(\widehat{xOy}+\widehat{yOz}=180^0\) (kề bù)
hay \(\widehat{xOy}+5\widehat{xOy}=180^0\)
\(\Leftrightarrow6\widehat{xOy}=180^0\)
\(\Leftrightarrow\widehat{xOy}=180^0\div6\)
\(\Leftrightarrow\widehat{xOy}=30^0\)
+) Tính \(\widehat{yOz}\)
Theo đề bài, ta có: \(\widehat{yOz}=5\widehat{xOy}\)
hay \(\widehat{yOz}=5.30^0\)
\(\Leftrightarrow\widehat{yOz}=150^0\)
b) Vì Om là tia phân giác của \(\widehat{yOz}\) nên \(\widehat{yOm}=\widehat{mOz}=\frac{\widehat{yOz}}{2}=\frac{150^0}{2}=75^0\)
Vì Om nằm giữa Oz và Oz mà \(\widehat{xOy}\) và \(\widehat{yOz}\) kề bù nên Oy nằm giữa Ox và Om.
\(\Rightarrow\widehat{xOy}+\widehat{yOm}=\widehat{xOm}\)
hay \(30^0+75^0=\widehat{xOm}\)
\(\Leftrightarrow\widehat{xOm}=105^0\)
Vậy \(\widehat{xOm}=105^0\)
cho 2 góc kề bù xoy và yoz.biết 1/2 góc xoy=3/4 góc yoz. tính góc xoy và góc yoz
góc 1/2 góc xoy = 3/4 góc yoz => góc xoy = (3/4 : 1/2) góc yoz = 3/2 góc yoz
góc xoy và yoz kề bù nên góc xoy + góc yoz = 180o
=> góc xoy bằng: 180o : (3+ 2) x 3 = 108o
=> góc yoz = 180o - 108o = 72o
Bài 1: cho 2 góc kề bù xOy và yOz sao cho xOy = 120 độ.
a) Tính góc yOz.
b) Gọi Ot là tia phân giác của góc yOz. Chứng tỏ zOt = 1/4 xOy
a, vì hai góc xOy và góc yOz kề bù
=>xOy + yOz = 180 độ
=>1200 +yOz = 1800
=>yOz = 1800- 1200
=>yOz = 60o
Vậy góc yOz = 600
b, vì tia ot là tia phân giác của góc yOz
=>yOt = zOt = 1/2 . zOy
=>yOt = zOt = 1/2.600
=yOt = zOt = 300
ta có : zOt : xOy =1/ 4
=> zOt = 1/4 xOy
Cho góc xOy và góc yOz là hai góc kề bù,biết góc yOz=2.góc xOy
Tính góc xOy và góc yoz
Ta có : \(\widehat{xOy}+\widehat{yOz}=180^0\)(hai góc kề bù)
Mà \(\widehat{yOz}=2\widehat{xOy}\)
=> \(\widehat{xOy}+2\widehat{xOy}=180^0\)
=> \(3\widehat{xOy}=180^0\)
=> \(\widehat{xOy}=60^0\)
Theo đề bài có \(\widehat{yOz}=2\widehat{xOy}\Leftrightarrow\widehat{yOz}=2\cdot60^0=120^0\)
Vậy : ...
Vì \(\widehat{xOy}\)và \(\widehat{yOz}\)là 2 góc kề bù \(\Rightarrow\widehat{xOy}+\widehat{yOz}=180^o\)
mà \(\widehat{yOz}=2.\widehat{xOy}\)
\(\Rightarrow\widehat{xOy}+2.\widehat{xOy}=180^o\)\(\Rightarrow3.\widehat{xOy}=180^o\)\(\Rightarrow\widehat{xOy}=60^o\)
\(\Rightarrow\widehat{yOz}=180^o-60^o=120^o\)
Vậy \(\widehat{xOy}=60^o\)và \(\widehat{yOz}=120^o\)
Bài giải
Hai góc xOy và yOz là hai góc kề bù =>xOy+yOz =180 (độ)
xOy+xOy.2=180( độ)
3.xOy =180(độ)
xOy =180:3(độ)
xOy =60(độ)
Ta có: yOz=2.xOy =>yOz=60.2=120(độ)
Cho 2 góc kề bù xOy, yOz sao cho góc xOy bằng 120 độ
a) Tính góc yOz
b) Gọi Ot là tia phân giác của góc yOz. Chứng tỏ góc zOt bằng 1/4 góc xOy
a,Ta có: xOy+yOz=180 độ
=> 120 +yOz= 180 độ
=> yOz=60 độ
b, Ot là tia phân giác yOz
=> zOt = yOz/2 = 30 độ
=> zOt = 120/4 = xOy/4
Cho 2 góc kề bù xOy và yOz .Biết góc xOy=yOz/2
a,Tính góc xOy và yOz
(Bạn tự vẽ hình!)
a) Ta có: \(\widehat{xOy}+\widehat{yOz}=180\) độ (Kề bù)
\(\Rightarrow\widehat{xOy}+2\widehat{xOy}=180\)
\(\Rightarrow3\widehat{xOy}=180\)
\(\Rightarrow\widehat{xOy}=\frac{180}{3}=60\)độ
Khi có góc xOy thì tính được \(\widehat{yOz}=60.2=120\)độ
cho góc xoy và góc yoz là hai góc kề bù tính xoy biết yoz=1/5 xoy
vì xOy và yOz là hai góc kề bù
=> xOy + yOz = 180 độ
Mà yOz = 1/5 xOy
Thay vào , ta được :
xOy + 1/5 xOy = 180 độ
xOy . ( 1 + 1/5 ) = 180 độ
xOy . 6/5 = 180 độ
xOy = 180 độ : 6/5
xOy = 150