Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
LN
Xem chi tiết
HI
6 tháng 6 2016 lúc 17:59

Đặ Un=16^n-15n-1=225

Gỉa sử ta có Un chia hết cho 225 với n bằng một giá trị k bất kì (k>=1) tức là Uk=16^k-15k-1 chia hết cho 225

Do đó ta cần chứng minh tiếp U[k+1]=16^k+1-15k-1 chia hết cho 225 là ok

Nên ta có tiếp 16^(k+1)-15(k+1)-1=16^16k-15k-15-1=16^k-15k-1+15*16^k-15=Uk+15+(16^k-1)*(1) do đó nên ta đã có Uk chia hết cho 225.Rồi ta chỉ cần chứng minh cho 16^k-1 chia hết cho 15 là được

Bình luận (0)
KM
Xem chi tiết
.
21 tháng 1 2020 lúc 21:23

a) Ta có : n-2017\(⋮\)n-2018

\(\Rightarrow\)n-2018+1\(⋮\)n-2018

Vì n-2018\(⋮\)n-2018 nên 1 \(⋮\)n-2018

\(\Rightarrow n-2018\inƯ\left(1\right)=\left\{\pm1\right\}\)

+) n-2018=-1

    n=2017  (thỏa mãn)

+) n-2018=1

     n=2019  (thỏa mãn)

Vậy n\(\in\){2017;2019}

Bình luận (0)
 Khách vãng lai đã xóa
.
21 tháng 1 2020 lúc 21:31

c) Ta có : 2n-3\(⋮\)2n-5

\(\Rightarrow\)2n-5+2\(⋮\)2n-5

Vì 2n-5\(⋮\)2n-5 nên 2\(⋮\)2n-5

\(\Rightarrow2n-5\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

+) 2n-5=-1\(\Rightarrow\)2n=4\(\Rightarrow\)n=2  (thỏa mãn)

+) 2n-5=1\(\Rightarrow\)2n=6\(\Rightarrow\)n=3  (thỏa mãn)

+) 2n-5=-2\(\Rightarrow\)2n=3\(\Rightarrow\)n=1,5  (không thỏa mãn)

+) 2n-5=2\(\Rightarrow\)2n=7\(\Rightarrow\)n=3,5  (không thỏa mãn)

Vậy n\(\in\){2;3}

Bình luận (0)
 Khách vãng lai đã xóa
LR
Xem chi tiết
NS
13 tháng 10 2016 lúc 19:26

Ta có:

A,3n +7 chia hết cho n ( đề bài)

Lại có: 3n  chia hết cho n vì n nhân bất cứ số nào cũng chia hết cho n.(1)

Suy ra 7 chia hết cho n. Mà 7 chỉ chia hết cho 7 nên 3n+7 chia hết cho 7. (2)

Vậy ta có 3n +7 chia hết cho n.

Ta có:

B,4n chia hết cho 2n vì bất cứ số nào chia hết cho 4 cũng chia hết cho 2.

Mà 9 không chia hết cho 2n nên không tồn tại số tự nhiên n.

Phần c làm tương tự như phần b.

Phần d tớ chịu

Bình luận (0)
NS
14 tháng 10 2016 lúc 17:38

C, 6n chia hết cho 3n vì bất cứ số nào chia hết cho 6 cũng chia hết cho 3.

Mà 11 không chia hết cho 3n nên không tồn tại số tự nhiên n

D, Mình không biết trình bày chỉ biết kết quả là 2 thui mong bạn thông cảm!

Mình trả lời hết rồi nhé!

Bình luận (0)
BT
Xem chi tiết
ST
15 tháng 1 2017 lúc 19:31

a. 3n ⋮ -2

Vì 3 ⋮̸ -2 nên để 3n ⋮ -2 thì n ⋮ -2

=> n ∈ B(-2)

=> n = -2k (k ∈ N)

Vậy n có dạng -2k (k ∈ N)

b. n + 5 ⋮ 5

=> n + 5 ∈ B(5)

=> n + 5 = 5k (k ∈ N)

=> n = 5k - 5 (k ∈ N)

Vậy n có dạng 5k - 5 (k ∈ N)

c. 6 ⋮ n

=> n ∈ Ư(6) = {1;-1;2;-2;3;-3;6;-6}

=> n ∈ {1;-1;2;-2;3;-3;6;-6}

d. 5 ⋮ n - 1

=> n - 1 ∈ Ư(5) = {1;-1;5;-5}

=> n ∈ {2;0;6;-4}

e. n + 5 ⋮ n - 2

=> n - 2 + 7 ⋮ n - 2

=> 7 ⋮ n - 2

=> n - 2 ∈ Ư(7) = {1;-1;7;-7}

=> n ∈ {3;1;9;-5}

g. 2n + 1 ⋮ n - 5

=> 2n - 10 + 11 ⋮ n - 5

=> 2(n - 5) + 11 ⋮ n - 5

=> 11 ⋮ n - 5

=> n - 5 ∈ Ư(11) = {1;-1;11;-11}

=> n ∈ {6;4;16;-6}

Bình luận (0)
AL
Xem chi tiết
AL
22 tháng 1 2016 lúc 18:25

mik ghi đầy đủ rồi mà!!! ý bạn là sao? mik chưa hiểu!!

Bình luận (0)
AL
22 tháng 1 2016 lúc 18:34

làm ơn giúp tớ với

 

Bình luận (0)
CH
22 tháng 1 2016 lúc 18:40

2n-11 chia het n-3

2n-11=n+n-11 = n-3+n-3+5

vi n-3 chia het cho n-3 => 5 chia het cho n-3

=> n-3 \(\in\)U(5)

con lai thi tu lam duoc roi

Bình luận (0)
LC
Xem chi tiết
TC
14 tháng 9 2017 lúc 18:30

2k+1

3k+2

7k+5

11k

k nha

Bình luận (0)
TC
14 tháng 9 2017 lúc 18:22

a chia hết cho 2 + 1

a chia hết cho 3 +2

a chia hết cho 7+5

a chia hết cho 11

Bình luận (0)
BD
14 tháng 9 2017 lúc 18:28

a ) 2k + 1

b ) 3k + 2

c ) 7k + 5

d ) 11k

Bình luận (0)
VT
Xem chi tiết
NN
9 tháng 1 2016 lúc 11:05

  Đặt Un = 16^n-15n-1 
- Xét n = 1 , ta có : U1 = 16^1 - 15*1 - 1 =0 chia hết cho 225 
- Giả sử Un chia hết cho 225 với n = k nào đó ( k >=1), tức là : Uk = 16^k -15k -1 chia hết cho 225 
Giờ ta chỉ cần chứng minh U[k + 1] = 16^(k + 1 ) -15(k + 1) -1 chia hết cho 225 là được 
**Thật vậy ta có 16^(k + 1 ) -15(k + 1) -1 = 16*16^k - 15k - 15 - 1 = 16^k -15k -1 + 15*16^k -15=Uk + 15(16^k -1) (1) Ở đây, đã có Uk chia hết cho 225 rồi, ta thấy chỉ cần chứng minh 16^k -1 chia hết cho 15 nữa là được 
_________________- 

Với việc chứng minh Vk = 16^k - 1 chia hết cho 15 
- Xét k = 1 , ta có V1 = 15 chia hết cho 15 
- Giả sử Vk chia hết cho 15 với k = h nào đó (h>= 1), tức là Vh = 16^h -1 chia hết cho 15 
Giờ ta chỉ cần chứng minh V[h + 1] = 16^(h + 1) - 1 chia hết cho 15 là được 
*** Thật vậy tacó 16^(h+1) - 1 = (16^h)*16 - 1 = 16^h - 1 + 15*16^h = Vh + 15*16^h chia hết cho 15 (2) 

______________ 

Vậy từ (1) và (2) ta có được điều phãi chứng minh

Bình luận (0)
SN
9 tháng 1 2016 lúc 11:05

16 đồng dư với 1(mod 15)

=>16n đồng dư với 1(mod 15)

=>16n-1 đồng dư với 0(mod 15)

=>16n-1 chia hết cho 15

mà 15n chia hết cho 15

=>16n-15n-1 chia hết cho 15(đpcm)

Bình luận (0)
NM
24 tháng 2 2018 lúc 17:54

Với n=1 thì 16– 15n – 1 = 16 – 15 – 1 = 0 ⋮ 225

 Giả sử 16– 15k – 1 ⋮ 225

 Ta chứng minh 16k+1 – 15(k+1)  – 1 ⋮ 225

Thực vậy: 16k+1 – 15(k+1) – 1 = 16.16k – 15k – 15 – 1

= (16– 15k – 1) + 15.16– 15

Theo giả thiết qui nạp 16– 15k – 1 ⋮ 225

Còn 15.16– 15 = 15(16– 1) ⋮ 15.15 = 225

Kết luận: Vậy 16– 15n – 1 ⋮ 225.

Bình luận (0)
KK
Xem chi tiết
H24
17 tháng 7 2019 lúc 19:59

Em thử quy nạp nhé!

Với n = 1 thì mệnh đề đúng

Giả sử đúng với n = k thuộc N* tức là \(16^k-15k-1⋮225\) (giả thiết quy nạp)

Cần chứng minh nó đúng với n = k + 1. Tức là chứng minh \(16^{k+1}-15\left(k+1\right)-1⋮225\)

\(\Leftrightarrow16^k.16-15k-16⋮225\)

\(\Leftrightarrow16\left(16^k-15k-1\right)+15.15k⋮225\) (luôn đúng theo giả thiết quy nạp)

Ta có đpcm

Bình luận (0)
KN
16 tháng 8 2020 lúc 21:06

n nguyên dương nên \(n\ge1\)

+) Xét n = 1 thì \(16^n-15n-1=0⋮225\)

Như vậy thì khẳng định đúng với n = 1

+) Giả sử khẳng định đúng với n = t tức là \(16^t-15t-1⋮225\)

Ta chứng minh khẳng định đúng với n = t + 1

Thật vậy: \(16^{t+1}-15\left(t+1\right)-1=16^t\left(15+1\right)-15t-15-1\)

\(=\left(16^t-15t-1\right)+15\left(16^t-1\right)\)

Ta có: \(16^t-1⋮16-1=15\)suy ra \(15\left(16^t-1\right)⋮225\)

Mà \(\left(16^t-15t-1\right)⋮225\)(Theo giả sử) nên \(16^{t+1}-15\left(t+1\right)-1⋮225\)

Vậy \(16^n-15n-1⋮225\forall n\inℕ^∗\)

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết