CM P/S sau là P/S tối giản:
1) 14n+3/21n+4
2) 12N+1/20N+2
3)8N+5/6N+4
4) 21N+4/14N+3
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(\frac{n+1}{2n+3};\frac{8n+5}{6n+4};\frac{21n+4}{14n+3}\)Chứng minh rằng với mọi n thuộc N các phân số sau tối giản
chứng minh rằng : các p/s sau tối giản
a) 21n +4/ 14n+3
b) 8n + 3/ 18n + 7
a) Gọi d là ƯCLN(21n+4;14n+3)
Ta có: 21n+4 chia hết cho d
14n+3 chia hết cho d
\(\Rightarrow\orbr{\begin{cases}\left(21n+4\right).2=42n+8\\\left(14n+3\right).3=42n+9\end{cases}}\) chia hết cho d
=> (42n+9)-(42n+8)=1 chia hết cho d
=> d thuộc Ư(1)={1} => d=1 ĐPCM
b) Gọi d là ƯCLN(8n+3;18n+7)
Ta có: 8n+3 chia hết cho d => (8n+3).9=72n+27 chia hết cho d
18n+7 chia hết cho d => (18n+7).4=72n+28 chia hết cho d
=> (72n+28)-(72n+27) chia hết cho d
=> 1 chia hết cho => d thuộc Ư(1)
=> d=1 ĐPCM
chứng minh 16n+5 phần 6n+2 và 14n+3 phần 21n+4 là phân số tối giản
\(\frac{16n+5}{6n+2}\)là phân số tối giản ta đi chúng minh (16n+5; 6n+2)=1
Đặt: (16n+5; 6n+2)=d
=> 16n+5 chia hết cho d và 6n+2 chia hết cho d
=> 8.(6n+2) - 3.(16n+5) chia hết cho d=> 48n+16 - 48n-15=1
1 chia hết cho d hay d\(\in\)Ư(1) ={-1;1}
Vậy: d=1 => \(\frac{16n+5}{6n+2}\)là phân số tối giản
\(\frac{14n+3}{21n+4}\) làm tương tự như trên
Chứng minh rằng các phân số sau là phân số tối giản ( n thuộc N)
a) 12n+1/ 30n+2
b) 21n+4/ 14n+3
chứng minh rằng các phân số sau là phân số tối giản với mọi n nguyên
a) 8n+5/6n+4 b) 21n +4/14n+3 c) 3n-2/4n-3
Chứng minh các phân số sau là phân số tối giản
\(A=\dfrac{12n+1}{30n+2}\) \(B=\dfrac{14n+17}{21n+25}\)
Chúng tỏ các phản số sau tối giản:
A=12n+1/30n+2
B=14n+17/21n+25
A, Gọi d là ƯC(12n+1,30n+2). Ta có :
( 12n + 1 ) d => 5.( 12n + 1) d hay ( 30n + 5 ) d
( 30n + 2 ) d => 2 . ( 30n + 2 ) d hay ( 30n + 4 ) d
=> ( 30n + 5 ) - ( 30n + 4 ) = 1
=> d = 1
Vậy : là phân số tối giản
B, 14n+17/21n+25
gọi d là UCLN ( 14n+17,21n+25)
có [3.(14n+17)]-[2.(21n+25)] chia hết cho d
=> 42n+51 - 42n - 50 chia hết cho d
=> 1 chia hết cho d
=> B tổi giản
câu a
Gọi ƯCLN (12n+1,30n+2) là d
⇒(12n+1)⋮d
(30n+2)⋮d
⇒5(12n+1)−2(30n+2)⋮d
⇒60n+5−60n−4⋮d
⇒1⋮d⇔d=1
Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản
Ai giúp tôi làm bài này với đang rất cần mong các bạn trả lời.nhớ giải rõ ra nhé chứng minh rằng với mọi n thuộc N các phân số sau tối giản \(\frac{n+1}{2n+3};\frac{8n+5}{6n+4};\frac{21n+4}{14n+3}\)
chứng minh rằng các cặp số sau là số tối giản
a, 3n+4 và n+1
b, 2n+5 và 14n+7
c, 21n+4 và 14n+3
làm mẫu một bài nha :))
gợi UCLN(3n+4,n+1) =d. ta có:
\(\hept{\begin{cases}3n+4⋮d\\n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}3n+4⋮d\\3n+3⋮d\end{cases}}}\Rightarrow\left[\left(3n+4\right)-\left(3n+3\right)\right]⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
vì (3n+4,n+1) =1 => \(\frac{3n+4}{n+1}\)là phân số tối giản
chữa đề : chứng minh rằng các cặp số sau là số nguyên tố cùng nhau
vu thanh nam
đề là c/m hai số nguyên tố cùng nhau hay c/m phân số tối giản cũng giống nhau thôi :)
phải c/m UCLN = 1 là đc chỉ cố kết luận khác thôi