Những câu hỏi liên quan
LD
Xem chi tiết
TD
17 tháng 7 2021 lúc 19:52
= 2013 nhé bạn
Bình luận (0)
 Khách vãng lai đã xóa
TD
17 tháng 7 2021 lúc 19:52
=2013 nhé bạn
Bình luận (0)
 Khách vãng lai đã xóa
LV
Xem chi tiết
NT
Xem chi tiết
NS
Xem chi tiết
SG
24 tháng 7 2016 lúc 22:41

\(A=\frac{\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+...+\frac{2013}{2014}}{\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)

\(A=\frac{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{\left(1+\frac{2012}{2}\right)+\left(1+\frac{2011}{3}\right)+...+\left(1+\frac{1}{2013}\right)+1}\)

\(A=\frac{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}}\)

\(A=\frac{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{2014.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}\right)}\)

\(A=\frac{2013}{2014}\)

Bình luận (0)
H24
25 tháng 7 2016 lúc 12:26

\(A=\frac{\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+...+\frac{2013}{2014}}{\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)

    \(=\frac{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{\left(1+\frac{2012}{2}\right)+\left(1+\frac{2011}{3}\right)+...+\left(1+\frac{1}{2013}\right)+1}\)

    \(=\frac{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}}\)

 \(=\frac{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{2014.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}\right)}\)         

 \(=\frac{2013}{2014}\)

Bình luận (0)
CL
Xem chi tiết
TP
Xem chi tiết
TP
25 tháng 4 2021 lúc 15:21

\(A=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}}{\dfrac{2013}{1}+\dfrac{2012}{2}+...+\dfrac{1}{2013}}\) 

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}}{\left(\dfrac{2012}{2}+1\right)+\left(\dfrac{2011}{3}+1\right)+...+\left(\dfrac{1}{2013}+1\right)+\dfrac{2014}{2014}}\) 

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}}{2014\left(\dfrac{1}{2}+\dfrac{1}{.3}+...+\dfrac{1}{2014}\right)}\) 

\(=\dfrac{1}{2014}\)

 

Bình luận (0)
NT
Xem chi tiết
NT
Xem chi tiết
GM
26 tháng 1 2016 lúc 13:18

bạn bấm vào đúng 0 sẽ ra kết quả 

mình làm bài này rồi

Bình luận (0)
H24
26 tháng 1 2016 lúc 13:31

Đừng tin bn Thạch bạn ấy nói dối đấy

Chuẩn 100% luôn tik nha

Bình luận (0)
DC
Xem chi tiết
H24
19 tháng 3 2017 lúc 17:48

\(A=\frac{\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}\)'

\(A=\frac{\left(1+\frac{2012}{2}+1+\frac{2010}{2}+1+...+\frac{1}{2012}+1\right)}{\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)}\)

\(A=\frac{\left(1+\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}\right)}{\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)}\)

\(A=\frac{2013\left(\frac{1}{2013}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}\right)}{\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)}\)

\(\Rightarrow A=2013\)

Bình luận (0)
HD
28 tháng 2 2019 lúc 20:06

Giải thích giùm e dấu bằng thứ nhất và hai được ko ạ?

Bình luận (0)