Những câu hỏi liên quan
NT
Xem chi tiết
NM
Xem chi tiết
DV
Xem chi tiết
TA
Xem chi tiết
MR
28 tháng 7 2021 lúc 14:55

đáp án:

A=802−79.80+1601=80(80−79)+1601=80+1601=1681=412A=802−79.80+1601=80(80−79)+1601=80+1601=1681=412

chia hết cho 41 nên không phải là SNT

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
16 tháng 11 2015 lúc 13:12

A=802=......0

suy ra 79.80=............0

mà tận cùng à 0 thì không phải là số nguyên tố

Bình luận (0)
VT
Xem chi tiết
BK
Xem chi tiết
H24
Xem chi tiết
H24
27 tháng 5 2021 lúc 8:31

thật ra nó là lớp 7 đấy nhưng mình nghĩ lớp 8 mới giỏi mói giải đc

 

Bình luận (1)
TH
27 tháng 5 2021 lúc 10:01

Giả sử \(a^2+1\) và \(b^2+1\) cùng chia hết cho số nguyên tố p

\(\Rightarrow a^2-b^2⋮p\)

\(\Rightarrow\left(a-b\right)\left(a+b\right)⋮p\Rightarrow\left[{}\begin{matrix}a-b⋮p\\a+b⋮p\end{matrix}\right.\).

+) Nếu \(a-b⋮p\) thì ta có \(\left(a^2+1\right)\left(b^2+1\right)-\left(a-b\right)^2⋮p\Rightarrow\left(ab+1\right)^2⋮p\Rightarrow ab+1⋮p\) (vô lí do (a - b, ab + 1) = 1)

+) Nếu \(a+b⋮p\) thì tương tự ta có \(ab-1⋮p\). (vô lí)

Do đó \(\left(a^2+1,b^2+1\right)=1\).

Giả sử \(\left(a+b\right)^2+\left(ab-1\right)^2=c^2\) với \(c\in\mathbb{N*}\)

Khi đó ta có \(\left(a^2+1\right)\left(b^2+1\right)=c^2\).

Mà \(\left(a^2+1,b^2+1\right)=1\) nên theo bổ đề về số chính phương, ta có \(a^2+1\) và \(b^2+1\) là các số chính phương.

Đặt \(a^2+1=d^2(d\in\mathbb{N*})\Rightarrow (d-a)(d+a)=1\Rightarrow d=1;a=0\), vô lí.

Vậy ....

Bình luận (0)
NN
Xem chi tiết
TN
10 tháng 4 2016 lúc 10:56

ta có:\(A=\frac{8^9+12}{8^9+7}=\frac{8^9+7+5}{8^9+7}=\frac{8^9+7}{8^9+7}+\frac{5}{8^9+7}=1+\frac{5}{8^9+7}\)

\(B=\frac{8^{10}+4}{8^{10}-1}=\frac{8^{10}-1+5}{8^{10}-1}=\frac{8^{10}-1}{8^{10}-1}+\frac{5}{8^{10}-1}=1+\frac{5}{8^{10}-1}\)

vì 810-1>89+7

\(\Rightarrow\frac{5}{8^{10}-1}<\frac{5}{8^9+7}\)

\(\Rightarrow1+\frac{5}{8^{10}-1}<1+\frac{5}{8^9+7}\)

=>A<B

Bình luận (0)
TH
12 tháng 5 2016 lúc 0:46

Chưa nghĩ ra...!!!

Bình luận (0)
TH
12 tháng 5 2016 lúc 1:46

Thấy:k^2>k^2-1=(k-1)(k+1) 2^2>1.3; 4^2>3.5;…;〖80〗^2>79.81
〖Suy ra: A〗^2=(1^2.3^2….〖79〗^2)/(2^2.4^2….〖80〗^2 )<(1^2.3^2….〖79〗^2)/(1.3.3.5.5.7….79.81)=1/81
Vậy: A<1/9

Trần Trung Hiếu - Trường THCS Trung Châu - Đan Phượng - TP. Hà Nội

Bình luận (0)