so sánh A và B biết A=15^6+1/15^7+1 va B=15^15+1/15^16+1
so sánh A và B biết A=1515+1\1516+1 và B+=1516+1\1517+1
áp dụng tc \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{a+m}< 1\left(m\in N\right)\)
Ta có: \(B=\frac{15^{16}+1}{15^{17}+1}< \frac{15^{16}+1+14}{15^{17}+1+14}\)\(=\frac{15^{16}+15}{15^{17}+15}=\frac{15.\left(15^{15}+1\right)}{15.\left(15^{16}+1\right)}=\frac{15^{15}+1}{15^{16}+1}\)
\(\Rightarrow B< A\)
\(A=\frac{15^{15}+1}{15^{16}+1}\)
\(\Rightarrow15A=\frac{15^{16}+15}{15^{16}+1}\)
\(\Rightarrow15A=\frac{15^{16}+1+14}{15^{16}+1}\)
\(\Rightarrow15A=\frac{15^{16}+1}{15^{16}+1}+\frac{14}{15^{16}+1}\)
\(\Rightarrow15A=1+\frac{14}{15^{16}+1}\)
\(B=\frac{15^{16}+1}{15^{17}+1}\)
\(\Rightarrow15B=\frac{15^{17}+15}{15^{17}+1}\)
\(\Rightarrow15B=\frac{15^{17}+1+14}{15^{17}+1}\)
\(\Rightarrow15B=\frac{15^{17}+1}{15^{17}+1}+\frac{14}{15^{17}+1}\)
\(\Rightarrow15B=1+\frac{14}{15^{17}+1}\)
Vì \(\frac{14}{15^{17}+1}< \frac{14}{15^{16}+1}\) nên \(15B< 15A\)
Vậy B < A
so sánh A và B biết A=1515+1\1516+1 và B+=1516+1\1517+1
So sánh A và B biết A=\(\frac{15^{15}+1}{15^{16}+1}\) B=\(\frac{15^{16}+1}{15^{17}+1}\)
Ta có công thức :
\(\frac{a}{b}< 1\) \(\Rightarrow\) \(\frac{a}{b}< \frac{a+c}{b+c}\)
\(\Rightarrow\)\(B=\frac{15^{16}+1}{15^{17}+1}< \frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15\left(15^{15}+1\right)}{15\left(15^{16}+1\right)}=\frac{15^{15}+1}{15^{16}+1}=A\)
Vậy \(A>B\)
tại sao a/b<1 thì a/b<a+c/b+C
so sanh A va B biet A=156+1/157+1 va B=1515+1/1516+1
\(\frac{15^{16}+1}{15^{17}+1}<\frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15\left(15^{15}+1\right)}{15\left(15^{16}+1\right)}=\frac{15^{15}+1}{15^{16}+1}\)
\(\Rightarrow\frac{15^{16}+1}{15^{17}+1}<\frac{15^{15}+1}{15^{16}+1}\)
=> A < B
So sánh các hỗn số sau :
a) 4 7/10 va 6 7/10
b) 3 4/15 va 3 11/15
c) 5 1/9 va 2 2/5
d) 2 2/5 và 2 10/15
4 7/10 < 6 7/10
3 4/15 <3 11/15
5 1/9 > 2 2/5
2 2/5 > 2 10/15
So sánh:
A=1516+1/1517+1 và B=1515+1/1516+1
A=20182019+1/20182018+1 và B=20182018+1/20182019+1
a, Vì A, B < 1
\(A=\frac{15^{16}+1}{15^{17}+1}< \frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15\left(15^{15}+1\right)}{15\left(15^{16}+1\right)}=\frac{15^{15}+1}{15^{16}+1}\)
b, \(B=\frac{2018^{2018}+1}{2018^{2019}+1}< 1< \frac{2018^{2019}+1}{2018^{2018}+1}=A\)
so sanh A= 13^15 + 1/13^6 +1 va B= 13^16 + 1/13^ 7+1
So sánh các hỗn số sau:
a) 4 7/10 va 6 7/10
b) 3 4/15 va 3 11/15
c) 5 1/9 va 2 2/5
d) 2 2/3 va 2 10/15
a) \(4\frac{7}{10}< 6\frac{7}{10}\)(4 < 6)
b) \(3\frac{4}{15}< 3\frac{11}{15}\)(4/15 < 11/15)
c) \(5\frac{1}{9}>2\frac{2}{5}\)(5 > 2)
d) \(2\frac{2}{3}=2\frac{10}{15}\)(10/15 = 2/3)
so sánh
A=\(\dfrac{14^{14}+1}{14^{15}+1}\) và B=\(\dfrac{14^{15}+1}{14^{16}+1}\)
\(A=\dfrac{14^{14}+1}{14^{15}+1}\)
\(\Rightarrow14.A=\dfrac{14^{15}+14}{14^{15}+1}\)
\(\Rightarrow14.A=\dfrac{14^{15}+1}{14^{15}+1}+\dfrac{13}{14^{15}+1}\)
\(\Rightarrow14.A=1+\dfrac{13}{14^{15}+1}\)
\(B=\dfrac{14^{15}+1}{14^{16}+1}\)
\(\Rightarrow14.B=\dfrac{14^{16}+14}{14^{16}+1}\)
\(\Rightarrow14.B=\dfrac{14^{16}+1}{14^{16}+1}+\dfrac{13}{14^{16}+1}\)
\(\Rightarrow14.B=1+\dfrac{13}{14^{16}+1}\)
Nhận xét: \(\dfrac{13}{14^{15}+1}>\dfrac{13}{14^{16}+1}\) (cùng tử, xét mẫu)
\(\Rightarrow A>B\)
Vậy \(A>B\)