Những câu hỏi liên quan
BH
Xem chi tiết
NH
13 tháng 11 2018 lúc 19:08

1)2n+5-2n-1

=>4 chia hết cho 2n-1

ước của 4 là 1 2 4

2n-1=1=>n=.....

tiếp với 2 và 4 nhé

Bình luận (0)
NT
Xem chi tiết
MN
25 tháng 11 2015 lúc 16:09

câu 1:ta có số 975 chia hết cho 65 và lớn nhất 

ta có:975/65=15

lại có thương=số dư suy ra số dư =15

suy ra số cần tìm là 975+15=990

Vậy số cần tìm là 990

câu 2 =4

câu 3 = 3

tick đi mình cho lời giải chi tiết

Bình luận (0)
H24
Xem chi tiết
PT
25 tháng 10 2018 lúc 20:14

Để n+4 chia hết cho n+1

=>n+1/n+1+3/n+1

=>n+1 thuộc ước của 3

=>       -     n+1= 1                        =>n=0

           -     n+1=-1                            n=-2(loại)

          -     n+1=3                             n=2  

          -    n+1=-3                             n=-4(loại)

Vậy n=0 và n=2      

Bình luận (0)
JB
25 tháng 10 2018 lúc 20:17

\(n+4⋮n+1\)

\(n+4=n+1+3⋮n +1\)

              mà \(n+1⋮n+1\)

\(\Rightarrow3⋮n+1\)

\(\Rightarrow n+1\inƯ\left(3\right)\)

             n+1                         1                                   2                            3          
             n                   0                   1          2

Vậy \(n\in\left\{0;1;2\right\}\)

nếu sai thì cho mk xin lỗi

Bình luận (0)
ND
Xem chi tiết
QH
1 tháng 8 2015 lúc 10:58

1. Gọi số đó là n. Ta có n-1 chia hết cho 2; 3; 4; 5; 6

Để n nhỏ nhất thì n-1 nhỏ nhất. Vậy ta đi tìm BCNN của các số trên là 60

n-1 chia hết cho 60 hay n-1 = 60k <=> n = 60k + 1 (*)

n chia hết cho 7 => 60k + 1 chia hết cho 7

<=> 60k ≡ -1 (mod 7) <=> 56k + 4k ≡ -1 (mod 7) <=> 4k ≡ -1 (mod 7)

<=> 4k ≡ 6 (mod 7) <=> 2k ≡ 3 (mod 7) <=> 2k ≡ 10 (mod 7) <=> k ≡ 5 (mod 7)

Vậy k nhỏ nhất là 5

Thế vào (*): n = 301 thỏa mãn

2. a) n = 25k - 1 chia hết cho 9

<=> 25k ≡ 1 (mod 9) <=> 27k - 2k ≡ 1 (mod 9) <=> -2k ≡ 1 (mod 9) <=> -2k ≡ 10 (mod 9)

<=> -k ≡ 5 (mod 9) <=> k ≡ 4 (mod 9)

Để n nhỏ nhất thì k nhỏ nhất, vậy k là 4

Thế vào trên được n = 99 thỏa mãn

b) ... -3k ≡ 1 (mod 21) <=> -21k ≡ 7 (mod 21) => Vô lý vì -21k luôn chia hết cho 21

Vậy không có n thỏa mãn

c) Đặt n = 9k

9k ≡ -1 (mod 25) <=> 9k ≡ 24 (mod 25) <=> 3k ≡ 8 (mod 25) <=> 3k ≡ 33 (mod 25)

<=> k ≡ 11 (mod 25) => k = 25a + 11 (1)

9k ≡ -2 (mod 4) <=> 9k ≡ 2 (mod 4) <=> k ≡ 2 (mod 4) => k = 4b + 2 (2)

Từ (1) và (2) => 25a + 11 = 4b + 2 <=> 25a + 9 = 4b => 25a + 9 ≡ 0 (mod 4)

<=> a + 1 ≡ 0 (mod 4) (*)

Lưu ý rằng n tự nhiên nhỏ nhất => k tự nhiên nhỏ nhất => a tự nhiên nhỏ nhất. Vậy a thỏa mãn (*) là a = 3 => n = 774 thỏa mãn

Mình không được dạy dạng toán này nên không biết cách trình bày, cách giải cũng là mình "tự chế" nên nhiều chỗ hơi "lạ" một chút, không biết đúng không nữa :D

Bình luận (0)
LD
13 tháng 10 2015 lúc 20:15

1. n = 301

2.a) n = 99

b) không có

c) n = 774

Bình luận (0)
DP
5 tháng 11 2015 lúc 17:55

qua de ma cung phai hoi

 

Bình luận (0)
NV
Xem chi tiết
TA
Xem chi tiết
AK
24 tháng 11 2018 lúc 12:05

a) n+4 chia hết cho n+1

n+4=n+1+3

Vì n+1 chia hết cho n+1 nên 3 phải chia hết cho n+1=>n+ là ước của 3

Ư(3)={1;3}

Nếu n+1=1=>n=0

Nếu n+1=3=>n=2

Bình luận (0)
EC
2 tháng 12 2018 lúc 9:07

a) n+4 chia hết cho n+1

Ta có: n+4 chia hết cho n+1

=> (n+1)+3 chia hết cho n+1

=> 3 chia cho n+1 hay n+1 thuộc ước của 3

Mà Ư(3)={1;3}

+) Nếu n+1=1 => n=0 (t/m)

+) Nếu n+1=3 => n=2 (t/m)

Vậy n thuộc{0;2}

b);c) làm tương tự nha bn

Bình luận (0)
NL
Xem chi tiết
SK
28 tháng 7 2016 lúc 14:49

N+4 chia hết cho N+1

=> N + 1 + 3 chia hết cho N + 1

=> 3 chia hết cho N + 1

=> N + 1 thuộc Ư(3) = {1 ; -1 ; 3 ; -3}

Thế n + 1 vô từng ước của 3 rồi tìm x

bài b giống vậy

2N + 13 chia hết cho N + 4

=> 2N + 8 + 5 chia hết cho N + 4

=> 2 . (N + 4) + 5 chia hết cho N + 4

=> 5 chia hết cho N + 4

=> N + 4 thuộc Ư(5) = {1 ; -1 ; 5; -5}

còn lại giống bài a với b

Bình luận (0)
TH
Xem chi tiết
NP
Xem chi tiết