Những câu hỏi liên quan
H24
Xem chi tiết
NT
2 tháng 3 2017 lúc 11:33

a) \(\frac{2n+3}{4n+1}\) là phân số tối giản

\(\frac{2n+3}{4n+1}\)\(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1

=>n=1

mình ko chắc là đúng nha

Bình luận (0)
CC
Xem chi tiết
NU
14 tháng 4 2020 lúc 14:31

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

Bình luận (0)
 Khách vãng lai đã xóa
NT
14 tháng 4 2020 lúc 14:50

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

Bình luận (0)
 Khách vãng lai đã xóa
CC
15 tháng 4 2020 lúc 13:45

các bn giải hộ mk bài 2 ik

thật sự mk đang rất cần nó!!!

Bình luận (0)
 Khách vãng lai đã xóa
DM
Xem chi tiết
LY
Xem chi tiết
TN
Xem chi tiết
NT
1 tháng 3 2022 lúc 19:14

Gọi ƯCLN(2n+1005;4n+2011)=d(\(d\in\)N*) 

\(\Rightarrow2n+1005⋮d\Rightarrow4n+2010⋮d\Rightarrow4n+2011-4n-2010⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy ta có đpcm 

Bình luận (0)
NV
1 tháng 3 2022 lúc 20:16

gọi d là ƯC(2n+1005,4n+2011)(d\(\in\)N*) 

theo bài ra ta có 

2n+1005\(⋮\)d\(\Rightarrow\)2(2n+1005)\(⋮\)d\(\Rightarrow\)4n+2010\(⋮\)d

4n+2011\(⋮\)d

\(\Rightarrow\)(4n+2011)-(4n+2010)\(⋮\)d

\(\Rightarrow\)4n+2011-4n+2010\(⋮\)d

\(\Rightarrow\)1\(⋮\)d

\(\Rightarrow\)d=1

vậy với mọi n \(\in\)N thì \(\dfrac{2n+1005}{4n+2011}\) là phân số tối giản

Bình luận (0)
BH
Xem chi tiết
TL
27 tháng 4 2020 lúc 14:17

Gọi d là ƯCLN (2n+3; 4n+7) (d thuộc N)

=> \(\hept{\begin{cases}2n+3⋮d\\4n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+7⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+7⋮d\end{cases}}}\)

=> (4n+7)-(4n+6) chia hết cho d

=> 4n+7-4n-6 chia hết cho d

=> 1 chia hết cho d. Mà d thuộc N 

=> d=1 => ƯCLN (2n+3; 4n+7)=1

=> \(\frac{2n+3}{4n+7}\)tối giản với n thuộc Z

Bình luận (0)
 Khách vãng lai đã xóa
LD
27 tháng 4 2020 lúc 14:38

Gọi d là ƯC(2n + 3 ; 4n + 7)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+7⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4\left(2n+3\right)⋮d\\2\left(4n+7\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}8n+12⋮d\\8n+14⋮d\end{cases}}}\)

=> ( 8n + 12 ) - ( 8n + 14 ) chia hết cho d

=> 2 chia hết cho d

* d = 1 => 2n + 3 chia hết cho 1

* d = 2 => 2n + 3 không chia hết cho 2 vì 3 không chia hết cho 2

=> d = 1

=> ƯCLN(2n + 3; 4n + 7) = 1

=> \(\frac{2n+3}{4n+7}\)tối giản ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
LA
27 tháng 4 2020 lúc 14:44

Gọi ƯCLN(2n+3;4n+7) = d (d thuộc N*)

Ta có:\(\hept{\begin{cases}2n+3⋮d\\4n+7⋮d\end{cases}}\)

    \(\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+7⋮d\end{cases}}\)

    \(\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+7⋮d\end{cases}}\)

   \(\Rightarrow\left(4n+7\right)-\left(4n+6\right)⋮d\)

   \(\Rightarrow1⋮d\)

   \(\Rightarrow d=1\)

    \(\Rightarrow\frac{2n+3}{4n+7}\)là phân số tối giản với mọi n thuộc Z(ĐPCM)

Bình luận (0)
 Khách vãng lai đã xóa
LT
Xem chi tiết
DH
27 tháng 2 2021 lúc 14:18

a) Đặt \(d=\left(n+1,2n+3\right)\).

Suy ra \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\left(2n+3\right)-\left(2n+2\right)=1⋮d\)

Suy ra \(d=1\)

Do đó ta có đpcm. 

b) Bạn làm tương tự ý a). 

c) Đặt \(d=\left(3n+2,5n+3\right)\).

Ta có: \(\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}}\Rightarrow5\left(3n+2\right)-3\left(5n+3\right)=1⋮d\).

Suy ra \(d=1\)

Bình luận (0)
 Khách vãng lai đã xóa
LT
27 tháng 2 2021 lúc 14:12
N=2 2n=2.10
Bình luận (0)
 Khách vãng lai đã xóa
LN
Xem chi tiết
DN
Xem chi tiết
HG
14 tháng 7 2015 lúc 8:41

Gọi ƯC nguyên tố của 4n+3 và 2n-1 là d. Ta có:

4n+3 chia hết cho d => 4n-2+5 chia hết cho d

2n-1 chia hết cho d => 4n-2 chia hết cho d

=> 4n-2+5-(4n-2) chia hết cho d

=> 5 chia hết cho d

Giả sử phân số rút gọn được

=> 2n-1 chia hết cho 5

=> 2n-1+5 chia hết cho 5

=> 2n+4 chia hết cho 5

=> 2(n+2) chia hết cho 5

=> n+2 chia hết cho 5

=> n = 5k-2

=> Vậy để phân số tối giản thì n\(\ne\)5k-2

Bình luận (0)