Tìm b nguyên dương biết nghịch đảo của nó lớn hơn \(\frac{1}{2}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh rằng :
a) Tổng của một số phân số dương với số nghịch đảo của nó thì lớn hơn hoặc bằng 2
b) Áp dụng để chứng tỏ rằng nếu x , y là các số nguyên cùng dương hoặc cùng âm thì \(p=\frac{3x}{y}+\frac{3y}{x}\ge6\)
\(a.\)Ta có:\(\frac{x}{y}+\frac{y}{x}\ge2\)
\(AM-GM:\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\left(đpcm\right)\)
\(b.\)Nếu x,y dương thì Áp dụng BĐT Cô-si ta có:\(\frac{3x}{y}+\frac{3y}{x}\ge2\sqrt{\frac{3x}{y}.\frac{3y}{x}}=6\)hay\(\frac{3x}{y}+\frac{3y}{x}\ge6\left(đpcm\right)\)
Nếu x,y âm ta có:\(\frac{3x}{y}+\frac{3y}{x}=\frac{3x^2}{xy}+\frac{3y^2}{xy}\ge2\sqrt{\frac{3x^2}{xy}.\frac{3y^2}{xy}}=6\left(đpcm\right)\)
Tìm b nguyên dương biết nghịch đảo của nó lớn hơn \(\frac{1}{2}\). Trả lời: b =
Số nghịch đảo \(\frac{a}{b}\) (b > 0) của b lớn hơn \(\frac{1}{2}\) thì là \(\frac{1}{1}\).
Vậy b bằng 1.
1/b>1/2 do vậy b<2 mà b ng,duong b=1
a)Chứng minh rằng tổng của một phân số dương với nghịch đảo của nó không nhỏ hơn 2.
b) Tìm các phân số có tử và mẫu đều dương sao cho tổng của phân số đó với nghịch đảo của nó có giá trị nhỏ nhất.
a. Gọi phân số cần tìm là \(\frac{a}{b}\)
\(\Rightarrow\) Phân số nghịch đảo là \(\frac{b}{a}\)
Theo bài ra, ta có:
\(\frac{a}{b}+\frac{b}{a}\ge2\)
\(\Leftrightarrow\frac{a^2+b^2}{ab}\ge2\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow a^2-ab+b^2-ab\ge0\)
\(\Leftrightarrow a\left(a-b\right)+b\left(b-a\right)\ge0\)
\(\Leftrightarrow a\left(a-b\right)-b\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
Vì (a-b)2 chắc chắn lớn hơn hoặc bằng 0
\(\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\)
Vậy tổng của một phân số dương với ghịch đảo của nó luôn lớn hơn hoặc bằng 2.
1.tổng của hai phân số tối giản là một số nguyên, CM mẫu của 2 p/s đó là hai số bằng nhau hoặc là hai số đối nhau
2.với a thuộc Z và 1/a là số nghịch đảo của số a
a)chứng tỏ rằng nghịch đảo của một số dương là một số dương nghịch đảo của một số âm là một số âm
b)tìm tất cả các số nguyên sao cho nghịch đảo cũa nó cũng là một số nguyên
2 tick nha các bạn
Chứng minh rằng tổng của một phân số dương vơi số nghịch đảo của nó thì không nhỏ hơn 2
Viết số nghịch đaoả của -2 dưới dạng tổng các nghịch đảo của ba số nguyên khác nhau
câu 1: tìm phân số bằng phân số 121/143 biết rằng hiệu của mẫu và tử của nó bằng 6
câu 2 tìm phân số bằng phân số 25/35 biết rằng tổng của tử và mẫu của nó bằng 4812
câu 3: tìm phân số bằng phân số 993/1000 biết rằng mẫu của phân số đó lớn hơn tử của nó 14 đơn vị
câu 4; Viết số nghịch đảo của -5 dưới dạng tổng các nghịch đảo của 3 số nguyên khác nhau
Câu 1 : phân số 33/39
Câu 2: phân số 2005/2807
Câu 3: phân số 1986/2000
Câu 4: các số nguyên là -1;1;-5. Tổng nghịch đảo là: -1+1-1/5=-1/5
33/9 thế thôi nha
1)chứng minh rằng tổng của một phân số dương với số nghịch đảo của nó thì không nhỏ hơn 2
2)viết số nghịch đảo của -2 dưới dạng tổng các nghịch đảo của ba số nguyên khác nhau
3)cho hai phân số 8/15 và 18/35.Tìm số lớn nhất sao cho khi chia mỗi phân số này cho số đó ta được kết quả là số nguyên
4)tìm hai số biết rằng 9/11 của số này bằng 6/7 của số kia và tổng của hai số đó bằng 258
5)tìm số tự nhiên a nhỏ nhất sao cho khi chia a cho 6/7 và chia a cho 10/11 ta đều được kết quả là số tự nhiên
6)tìm hai số biết rằng 7/9 của số này bằng 28/33 của số kia và hiệu của hai số đó bằng 9
CMR tổng của 1 phân số dương với số nghịch đảo của nó thì không nhỏ hơn 2
Dễ thôi
Ta có: \(a^2+b^2\)
Áp dụng BĐT Cauchy:
Ta có: \(\frac{a^2+b^2}{2}\ge\sqrt{\left(ab\right)^2}=ab\)
Suy ra: \(\frac{a^2+b^2}{ab}\ge2\)
Suy ra: \(\frac{a}{b}+\frac{b}{a}\ge2\)
Vậy đpcm
Chứng minh rằng:toormg của 1 phân số dương với số nghịch đảo của nó không nhỏ hơn 2
Gọi phân số đó là\(\frac{a}{b}\)
Theo đề ta có
\(\frac{a}{b}+\frac{b}{a}\)=\(\frac{2a}{ab}+\frac{2b}{ab}\)=\(\frac{2a+2b}{ab}\)=\(\frac{1a+1b}{1}\)=\(1a+1b\)
Vì \(\frac{a}{b}\)là một phân số dương nên \(a\ge1;b\ge1\)\(\Rightarrow\)\(1a+1b\ge2\)
Vậy ta chứng minh rằng tổng của một phân số dương với số nghịch đảo không bao giờ nhỏ hơn 2.
Gọi phân số dương là a/b. Không mất tính tổng quát, giả sử a>0, b>0 và a≥b. Ta có thể viết a=b+m (m≥0). Ta có:
(a/b)+(b/a)=b/(b+m)≥1+[m/(b+m)]+[b/(b+m)]=1+[(m+b)/(b+m)]=2.
Vậy (a/b)+(b/a)=2
Dấu đẳng thức xảy ra khi a=b (m=0).