Tính nhanh \(K=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
Tính nhanh:
\(\frac{4}{2.4}\)+\(\frac{4}{4.6}+\frac{4}{6.8}+....+\frac{4}{2008.2010}\)
\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(=2.\frac{502}{1005}\)
\(=\frac{1004}{1005}\)
Có gì ko hiểu thì cứ hỏi mình nha :)
Ta có: \(A=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(=2.2\frac{2}{4}+2.2\frac{2}{4.6}+2.2\frac{2}{6.8}+...+2.2\frac{2}{2008.2010}\)
\(=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(=2.\frac{1}{2}-2.\frac{1}{2010}\)
\(=1-\frac{1}{1005}\)
\(=\frac{1004}{1005}\)
\(\text{Ta có:}\) \(A=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(\Rightarrow\frac{1}{2}A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+....+\frac{2}{2008.2010}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{2008}-\frac{1}{2010}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{2010}\)
\(\Rightarrow\frac{1}{2}A=\frac{502}{1005}\)
\(\Rightarrow A=\frac{502}{1005}:\frac{1}{2}=\frac{1004}{1005}\)
\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+.....+\frac{4}{2008.2010}\)
Đặt A= \(\frac{4}{2.4}\)+\(\frac{4}{4.6}\)+\(\frac{4}{6.8}\)+...+\(\frac{4}{2008.2010}\)
A= 2(\(\frac{2}{2.4}\)+\(\frac{2}{4.6}\)+\(\frac{2}{6.8}\)+...+\(\frac{2}{2008.2010}\))
A=2(\(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\))
A=2(\(\frac{1}{2}-\frac{1}{2010}\))
A=2.\(\frac{502}{1005}\)
A=\(\frac{1004}{1005}\)
Mình ko ghi lai đề nha
4/2.4/4+4/4.4/6+......+4/2008.4/2010=4/2.4/2010=4/1005
Mình ko bt đúng ko nữa nha
A x 2/4= 2/2x4 + 2/4x6 + 2/6x8 +............+ 2/2008x2010
A x 2/4=4-2/2x4 + 6-4/4x6 + 8-6/6x8 +.......+ 2010-2008/2008x2010
A x 2/4=4/2x4 - 2/2x4 + 6/4x6 - 4/4x6 +8/6x8 -6/6x8 +............+ 2010/2008x2010 - 2008/2008x2010
A x 2/4=1/2-1/2010
A x 2/4=502/1005
A= 502/1005 / 2/4
A=1004/1005
C=\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+....+\frac{4}{2008.2010}\)
\(C=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(C=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(C=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(C=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2010}\right)\) \(;C=\frac{1}{2}.\frac{502}{1005}=\frac{251}{1005}\)
\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
=\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{1004.1005}\)
=\(2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1004.1005}\right)\)
=\(2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1004}-\frac{1}{1005}\right)\)
=\(2\left(1-\frac{1}{1005}\right)\)
=\(2.\frac{1004}{1005}\)
=\(\frac{2008}{1005}\)
P/s: Không biết đúng không nữa, làm đại ^.^
Ta thấy : \(\frac{4}{2.4}=\frac{1}{2}\left(\frac{4}{2}-\frac{4}{4}\right);\frac{4}{4.6}=\frac{1}{2}\left(\frac{4}{4}-\frac{4}{6}\right);...;\frac{4}{2008.2010}=\frac{1}{2}\left(\frac{4}{2008}-\frac{4}{2010}\right)\)
=> C =\(\frac{1}{2}.\left(\frac{4}{2}-\frac{4}{4}+\frac{4}{4}-\frac{4}{6}+\frac{4}{6}-\frac{4}{8}+...+\frac{4}{2008}-\frac{4}{2010}\right)\)
=> C = \(\frac{1}{2}\left(\frac{4}{2}-\frac{4}{2010}\right)=\frac{1}{2}\left(2-\frac{2}{1005}\right)=\frac{1}{2}\left(\frac{2010}{1005}-\frac{2}{1005}\right)\)
=> C = \(\frac{1}{2}\left(\frac{2010-2}{1005}\right)=\frac{1}{2}.\frac{2008}{1005}=\frac{1004}{1005}\)
Tính :
\(\frac{4}{2.4}\)+ \(\frac{4}{4.6}\)+ \(\frac{4}{6.8}\)+ .... +\(\frac{4}{2008.2010}\)
\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
=2.\(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\)
=2.(\(\frac{1}{2}-\frac{1}{2010}\)) = 2.(\(\frac{1005}{2010}-\frac{1}{2010}\))
=2.\(\frac{502}{1005}\)
=\(\frac{1004}{1005}\)
\(=2\left(\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{2008\cdot2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(=2\left(\frac{1005}{2010}-\frac{1}{2010}\right)\)
\(=2\cdot\frac{1004}{2010}\)
\(=\frac{1004}{1005}\)
\(k\)\(mk\)\(nha\)\(bn\)
Gọi tổng đó là A Ta có
A:2=2/2x4+2/4x6+...+2/2008x2010
A:2=1/2-1/4+1/4-1/6+...+1/2008-1/2010
A:2=1/2-1/2010
A:2=1004/2010
A=1004/2010x2
A=2008/2010=1004/1005
\(A=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(B=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(A=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+.....+\frac{4}{2008.2010}\)
\(\Rightarrow A=4\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+.....+\frac{1}{2008.2010}\right)\)
\(\Rightarrow A=4\left[\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{2008}-\frac{1}{2010}\right)\right]\)
\(\Rightarrow A=4\left[\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2010}\right)\right]\Rightarrow A=4\left(\frac{1}{2}.\frac{502}{1005}\right)\Rightarrow A=4.\frac{251}{1005}\Rightarrow A=\frac{1004}{1005}\)
\(B=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+....+\frac{1}{990}\)
\(\Rightarrow B=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+....+\frac{1}{30.33}\)
\(\Rightarrow B=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+.....+\frac{1}{30}-\frac{1}{33}\right)\)
\(\Rightarrow B=\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{33}\right)\Rightarrow B=\frac{1}{3}.\frac{10}{33}\Rightarrow B=\frac{10}{99}\)
= 2(2/2.4 + 2/4.6 +.....+ 2/2008.2016)
= 2(1/2 - 1/4 + 1/4 - 1/6 +....+ 1/2008 - 1/2016)
= 2(1/2 - 1/2016)
=2 . 1007/2016
=1007/1008
Tính nhanh
A = \(\frac{4}{2.4}\) + \(\frac{4}{4.6}\) +\(\frac{4}{6.8}\) + . . . . + \(\frac{4}{2008.2010}\)
\(A=\frac{4}{2\cdot4}+\frac{4}{4\cdot6}+\frac{4}{6\cdot8}+...+\frac{4}{2008\cdot2010}\)
\(A=2\left[\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{2008\cdot2010}\right]\)
\(A=2\left[1-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2008}-\frac{1}{2010}\right]\)
\(A=2\left[1-\frac{1}{2010}\right]=2\cdot\frac{2009}{2010}=\frac{2009}{1005}\)
A:2=2/2*4 + 2/4*6 + 2/6*8 + + ... + 2/2008*2010
A:2=1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 + ... + 1/2008 - 1/2010
A:2=1/2 - 1/2010
A:2=.,,( Bạn tự tính nhé)
các bạn khác chọn (k) đúng cho mình nhé
\(A=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008+2010}\)
\(=2\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(=2.\frac{502}{1005}\)
\(=\frac{1004}{1005}\)
Tính nhanh
1)A=\(\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
2)B=\(\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{73.75}\)
3)C=\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
A = \(\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
=\(7\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)
=\(7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{69}-\frac{1}{70}\right)\)
=\(7\left(\frac{1}{10}-\frac{1}{70}\right)\)
=\(7.\frac{3}{35}\)
=\(\frac{3}{5}\)
B=\(\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{73.75}\)
=\(\frac{1}{2}\left(\frac{2}{25.27}+\frac{2}{27.29}+\frac{2}{29.31}+...+\frac{2}{73.75}\right)\)
=\(\frac{1}{2}\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\right)\)
=\(\frac{1}{2}\left(\frac{1}{25}-\frac{1}{75}\right)\)
=\(\frac{1}{2}.\frac{2}{75}\)
=\(\frac{1}{75}\)
C : có ở bên dưới rồi, còn A và B thôi
1) A=7(\(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-......+\frac{1}{69}-\frac{1}{70}\) )
A=7 ( \(\frac{1}{10}-\frac{1}{70}\))
A=7x 6/70
A=3/5
Tính giá trị của biểu thức:
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(B=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(C=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+....+\frac{1}{990}\)
dễ mà bạn làm từ câu a nếu ra thì các câu khác cũng dễ thôi
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{2009\cdot2010}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(A=1-\frac{1}{2010}\)
\(A=\frac{2009}{2010}\)
tính các tổng sau : \(F=\frac{4}{2.4}\)+ \(\frac{4}{4.6}\)+ \(\frac{4}{6.8}\)+ ... + \(\frac{4}{2008.2010}\)
Ta có:F=4/2.4+4/4.6+4/6.8+...+4/2008.2010
=4/2.(2/2.4+2/4.6+2/6.8+...+2/2008.2010)
=2.(1/2-1/4+1/4-1/6+1/6-1/8+....+1/2008-1/2010)
=2.(1/2-1/2010)
=2.502/1005
=1004/1005
Mình chắc luôn đó, mình làm bài này rồi!