Những câu hỏi liên quan
MB
Xem chi tiết
NP
Xem chi tiết
NM
10 tháng 3 2016 lúc 16:22

A=1-1/3+1/3-1/5+....+1/99-1/100

A=1-1/100=99/100

Bình luận (0)
NM
10 tháng 3 2016 lúc 16:42

200A= 99/100   .200=198

Bình luận (0)
HS
Xem chi tiết
NN
3 tháng 5 2015 lúc 20:32

 

\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)

\(2A=\frac{1}{1}-\frac{1}{101}\)

\(2A=\frac{100}{101}\)

\(2A=\frac{100}{101}\Rightarrow A=\frac{100}{101}:2\)

\(\Rightarrow A=\frac{50}{101}\)

Bình luận (0)
HS
3 tháng 5 2015 lúc 20:44

xl câu hỏi có chút thay đổi mong các bn thông cảm

 

Bình luận (0)
TN
Xem chi tiết
LH
10 tháng 3 2016 lúc 19:35

\(2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.100}\right)\)

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.100}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

Bình luận (0)
H24
10 tháng 3 2016 lúc 19:38

2*(1/1*3+1/3*5+.......+1/99*100)

=2*(2/1*3+2/3*5+.....+2/99*100)*1/2

=1/3-1/5+1/5-1/7+....+1/99-1/100

=1/3-1/100

=100/300-3/300

=97/300

Bình luận (0)
KL
10 tháng 3 2016 lúc 19:46

2(1/1.3+1/3.5+1/5.7+...+1/99.100)

=2/1.3+2/3.5+2/5.7+...+2/99.100

=1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/100

=1-1/100

=99/100

Bình luận (0)
NH
Xem chi tiết
TT
21 tháng 3 2016 lúc 10:33

2S = 2/1.3+1/3.5+2/5.7+...+2/99.100

2S = 1/1-1/3+1/3-1/5+....+1/99-1/100

2S = 1-1/100

2S = 99/100

S = 99/100:2

S = 99/200

ủng hộ mk nhé

Bình luận (0)
OO
21 tháng 3 2016 lúc 10:36

\(\frac{1}{2}x\left(\frac{1}{3}-\frac{1}{3}+\frac{1}{5}-\frac{1}{5}+\frac{1}{7}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{99}+\frac{1}{100}\right)\)

=\(\frac{1}{2}x\frac{1}{100}=\frac{1}{200}\)

vậy S = \(\frac{1}{200}\)

Bình luận (0)
KN
Xem chi tiết
HQ
4 tháng 2 2017 lúc 10:39

a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

b) \(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(=2.\left(1-\frac{1}{99}\right)\)

\(=2.\frac{98}{99}\)

\(=\frac{196}{99}=1\frac{97}{99}\)

Bình luận (1)
BT
4 tháng 2 2017 lúc 10:41

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

\(B=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)

\(=1-\frac{1}{99}\)

\(=\frac{98}{99}\)

Bình luận (3)
DB
4 tháng 5 2019 lúc 13:18

A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)

=>\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

=>\(\frac{1}{1}-\frac{1}{100}\)

=>\(\frac{99}{100}\)

B=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{97.99}\)

=>\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}\)

=>\(\frac{1}{1}-\frac{1}{99}\)

=>\(\frac{98}{99}\)

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
KN
27 tháng 4 2019 lúc 10:20

1.

a. \(\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{99.100}\)

\(=5.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(=5.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=5.\left(1-\frac{1}{100}\right)\)

\(=5.\frac{99}{100}\)

\(=\frac{99}{20}\)

Bình luận (0)
KN
27 tháng 4 2019 lúc 10:23

b. \(\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{99.101}\)

\(=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)

\(=2.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{4}{2}.\left(1-\frac{1}{101}\right)\)

\(=2.\frac{100}{101}\)

\(=\frac{200}{101}\)

Bình luận (0)
KN
27 tháng 4 2019 lúc 10:24

Đặt \(A=\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{99.101}\)

\(\Rightarrow\frac{1}{2}A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(\Rightarrow\frac{1}{2}A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(\Rightarrow\frac{1}{2}A=1-\frac{1}{101}\)

\(\Rightarrow\frac{1}{2}A=\frac{100}{101}\)

\(\Rightarrow A=\frac{100}{101}.2\)

\(\Rightarrow A=\frac{200}{101}.\)

Bình luận (0)
TH
Xem chi tiết
MN
6 tháng 1 2016 lúc 20:01

\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(2S=1-\frac{1}{101}\Rightarrow2S+\frac{1}{101}=1\)

Bình luận (0)