cho x-y=9
tính giá trị biểu thức B= 7x-9/6x+y +7x+9/8x-y ta đượ B=.........
B1:Tính giá trị biểu thức P=5x-7x/5x+7y biế́t x/14=y/10
B2: Tính giá trị biểu thức C=a-10/b-9 - 2a-b/a+1 với a-b=1 và a khác -1 , b khác 9
a)Cho a + b + c = 9, a2 + b2 + c2 = 141. Tính giá trị của biểu thức M =ab + bc + ca
b) Cho x + y = 1 . Tính giá trị của biểu thức B = x3 + 3xy + y3
c) Cho x + y = a ; x2 + b2 = b ; x3 + y3 = c .Tính giá trị của biểu thức N =a3 - 3ab + 2c
d) Cho x + y = a ; x - y = b. Tính giá trị của biểu thức D = x3 - y3 theo a và b
a)Cho a + b + c = 9, a2 + b2 + c2 = 141. Tính giá trị của biểu thức M =ab + bc + ca
b) Cho x + y = 1 . Tính giá trị của biểu thức B = x3 + 3xy + y3
c) Cho x + y = a ; x2 + b2 = b ; x3 + y3 = c .Tính giá trị của biểu thức N =a3 - 3ab + 2c
d) Cho x + y = a ; x - y = b. Tính giá trị của biểu thức D = x3 - y3 theo a và b
a)a+b+c=9
=>(a+b+c)2=81
=>a2+b2+c2+2ab+2bc+2ca=81
Từ a2+b2+c2=141=>2ab+2bc+2ca=81-141=-60
=>2(ab+bc+ca)=-60=>ab+bc+ca=-30
b)x+y=1
=>(x+y)3=1
=>x3+3x2y+3xy2+y3=1
=>x3+y3+3xy(x+y)=1
=>x3+y3+3xy=1(Do x+y=1)
c)a3-3ab+2c=(x+y)3-3(x+y)(x2+y2)+2(x3+y3)
=x3+3x2y+3xy2+y3-3x3-3y3-3x2y-3xy2+2x3+2y3=0
d)đang tìm hướng giải
Cho biểu thức : A=\(\left(\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
a, Rút gọn biểu thức A
b, Tính giá trị biểu thức A tại x, biết \(x=-\dfrac{1}{2}\)
c, Tính giá trị của x để A<0
a, ĐKXĐ: x≠±3
A=\(\left(\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{3-x}{x+3}.\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{3-x}{x-3}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{9-x^2}{x^2-9}+\dfrac{x^2-3x}{x^2-9}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{-3}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\dfrac{-1}{x^2}\)
b, Thay x=\(-\dfrac{1}{2}\) (TMĐKXĐ) vào A ta có:
\(\dfrac{-1}{\left(-\dfrac{1}{2}\right)^2}\)=-4
c, A<0 ⇔ \(\dfrac{-1}{x^2}< 0\) ⇔ x2>0 (Đúng với mọi x)
Vậy để A<0 thì x đúng với mọi giá trị (trừ ±3)
a, Cho x+y=1. Tính giá trị của biểu thức x3+y3+3xy
b, Cho x-y=1. Tính giá trị của biểu thức x3-y3-3xy
a.Từ giả thiết:
x+y=1.
=> (x+y)^3=1^3=1
=> x^3 +3x^2.y+3x.y^2+y^3=1(HĐT)
=> x^3+y^3+3xy(x+y)=1
=> x^3+y^3+3xy.1=1
<=> x^3+y^3+3xy=1
b.x3-y3-3xy=x3-y3-3xy.1
Mà x-y=1 nên
x3-y3-3xy=x3-y3-3xy(x-y)
x3-y3-3x2y+3xy2
=(x-y)3=13=1
Tính giá trị của biểu thức sau: A=4x-5y/8x-7y. a) Tại x=-2, y=3; b) Biết x/y=5/4
a, Thay x = -2 ; y = 3 ta được
\(A=\dfrac{4\left(-2\right)-5.3}{8\left(-2\right)-7.3}=\dfrac{-8-15}{-16-21}=\dfrac{23}{37}\)
b, Ta có \(\dfrac{x}{y}=\dfrac{5}{4}\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=k\Rightarrow x=5k;y=4k\)
Thay vào ta được \(A=\dfrac{4.5k-5.4k}{8.5k-7.4k}=\dfrac{0}{40k-28k}=0\)
Cho x-y= 9. Tính giá trị của biểu thức B=\(\frac{7x-9}{6x+y}+\frac{7x+9}{8x-y}\) ta được B= ......??? z nhỉ!!!@
\(x-y=9\)
\(\Rightarrow x=y+9\)
Thay \(x=y+9\) vào biểu thức \(B\), ta có:
\(\frac{7x-9}{6x+y}=\frac{7\left(y+9\right)-9}{6\left(y+9\right)+y}=\frac{7y+63-9}{6y+54+y}=\frac{7y+54}{\left(6y+y\right)+54}=\frac{7y+54}{7y+54}=1\)
\(\frac{7x+9}{8x-y}=\frac{7\left(y+9\right)+9}{8\left(y+9\right)-y}=\frac{7y+63+9}{8y+72-y}=\frac{7y+72}{\left(8y-y\right)+72}=\frac{7y+72}{7y+72}=1\)
\(\Rightarrow B=\frac{7x-9}{6x+y}+\frac{7x+9}{8x-y}=1+1=2\)
Vậy \(B=2\)
Thay vì cách của bạn kia, Ta có: \(x-y=9=>x=9+y\)
Thay \(x=9+y\) vào B, ta có:
\(B=\dfrac{7x-9}{6x+y}+\dfrac{7x+9}{8x-y}\)
\(=>B=\dfrac{7(y+9)-9}{6(y+9)+y}+\dfrac{7(y+9)+9}{8(y+9)-y}\)
\(=>B=\dfrac{7y+54}{7y+54}+\dfrac{7y+72}{7y+72}\)
\(=>B=1+1=2\)
Violimpic kiểu khác:
nhận thấy Hai số hạng của B nếu (-1) tử xuất hiện (x-y)
\(\frac{7x-9}{6x+y}-1=\frac{7x-9-6x-y}{6x+y}=\frac{x-y-9}{6x+y}=\frac{9-9}{6x+y}=0\)
\(\frac{7x+9}{8x-y}-1=\frac{7x+9-8x+y}{8x-y}=\frac{9-\left(x-y\right)}{8x-y}=\frac{9-9}{8x-y}=0\)
=> B-2=0=> B=2
Tính giá trị của biểu thức sau: x= -1,y=2
A: 5+2.(8x+2)
B:2.(y^2 - 4x)
Với x=-1 giá trị biểu thức A là
5+2.[8.(-1)+2]=5+2.(-8+2)=5+2.(-6)=5-12= -7
Với x=-1; y=2 giá trị biểu thức B là
2.(y2-4x)=2.[22-4.(-1)]=2.(4+4)=2.8=16
a) Thay x vào biểu thức 5+2.(8x+2)
Ta được : 5 + 2. ( 8.(-1)+2)
= 5 + 2. (-6)
= 5 + ( -4 )
= 1
b) Thay x = -1 và y = 2 vào biểu thức 2.(\(y^2-4x\))
Ta được : \(2.\left(2^2-4.\left(-1\right)\right)\)
= 2. [ 4 - 4 . ( -1 )]
= 2. 0
= 0
1.
a)Cho x+y=1.Tính giá trị của biểu thức
1-x3+y3+3xy
b)Cho x-y=1.Tính giá trị biểu thức
x3-y3-3xy
2.Cho x+y=2 và x2+y2=10. Tính giá trị M=x3+y3
b) \(x^3-y^3-3xy\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=\left(x-y\right)\left[\left(x+y\right)^2-2xy+xy\right]-3xy\)
\(=\left(x-y\right)\left(1-xy\right)-3xy\)
\(=x-x^2y-y\)