Cho a,b,c,d là các chữ số (a,c = 0) thỏa mãn (12.ab + cd) : 11. Chứng minh rằng abcd : 11
Cho a,b,c,d là các chữ số (a,c thuộc 0) thoả mãn (12 x ab+cd) chia hết cho 11. Chứng minh abcd chia hết cho 11.
a) Tìm hai số tự nhiên m, n thỏa mãn: 18mn + 6^n = 222
b) Cho a,b,c,d là các chữ số (a,c = 0) thỏa mãn (12.ab + cd) : 11. Chứng minh rằng abcd : 11
a/ Ta có
\(6^3=216;6^4=1296\)
\(\Rightarrow n\le3\Rightarrow n=\left\{0;1;2;3\right\}\)
Thay lần lượt các giá trị của n vào \(18mn+6^n=222\) ta tìm được n=1 và m=12 là giá trị thoả mãn biểu thức
b/
\(\overline{abcd}=100.\overline{ab}+\overline{cd}=12.\overline{ab}+\overline{cd}+88.\overline{ab}\)
Ta có \(\left(12.\overline{ab}+\overline{cd}\right)⋮11;88.\overline{ab}⋮11\Rightarrow\overline{abcd}⋮11\)
cho a,b,c,d (a,c khác 0) thỏa mãn (12ab + cd) chia hết cho 11. Chứng minh rằng abcd chia hết 11.
cho các số nguyên a,b,c,d thỏa mãn a+b+c+d=0
chứng minh rằng (ab-cd)(bc-ad)(ac-bd) là số chính phương
Vì a+b+c+d=0\(\Rightarrow a+b+c=-d\Rightarrow ac+bc+c^2=-cd\)
\(\Rightarrow\)\(ab-cd=ab+ac+bc+c^2=\left(a+c\right)\left(b+c\right)\)
Tương tự ta có \(bc-ad=\left(a+b\right)\left(a+c\right)\)
\(ac-bd=\left(a+b\right)\left(b+c\right)\)
Từ 3 điều trên ta suy ra đpcm
cho các số nguyên a,b,c,d khác 0 ,thỏa mãn ab=cd. chứng minh rằng a^n+b^n+c^n+d^n
Câu 4 (0,5 điểm)
Cho bốn chữ số $a$; $b$; $c$; $d$ với $a$ và $c$ khác $0$ thỏa mãn ($\overline{cd} + 3.2^2.\overline{ab})$ $\vdots$ $11$.
Chứng minh $\overline{abcd}$ $\vdots$ $11$.
Ta có:
.
. .
. . .
Vì . . và . .
Nên .
abcd=1111; 2222; 3333; 4444;...
Ta có:
.
. .
. . .
Vì . . và . .
Nên .
Cho a,b,c,d là các số nguyên thỏa mãn: a+b = c+d và ab +1 = cd Chứng minh rằng : c= d
Cho các số nguyên a,b,c,d thỏa mãn a+b=c+d và ab+1=cd. Chứng minh rằng c=d
cho a,b,c,d là các số nguyên thỏa mãn ab+cd chia hết cho a-c. Chứng minh rằng ad+bc chia hết cho a-c.