cho s=1/31+1/32+1/33+..+1/60
cmr:3/5<s<4/5
cho N=1/31+1/32+.....+1/60
CMR 3/5<N<4/5
Giải:
N=1/31+1/32+...+1/60
Có 30 phân số; chia 3 nhóm
N=(1/31+1/32+...+1/40)+(1/41+...+1/50)+(1/51+...+1/60)
N>(1/40+1/40+...+1/40)+(1/50+...+1/50)+(1/60+...+1/60)
N>1/4+1/5+1/5
N>37/60>36/60=3/5
⇒N>3/5
Bạn tự làm nốt nhé tương tự như thế thôi!
Làm tiếp:
N<(1/30+1/30+...+1/30)+(1/40+...+1/40)+(1/50+...+1/50)
N<1/3+1/4+1/5
N<47/60<48/60=4/5
⇒N<4/5
mà 3/5<4/5
⇒3/5<N<4/5
Vậy 3/5<N<4/5
Chúc bạn học tốt!
Cho S= 1/31 + 1/32 + 1/33 +....+ 1/59 + 1/60. CMR 3/5<S<4/5
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)
Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ; (1/51 + 1/52+...+1/59+1/60) > 1/6
S > 1/4 + 1/5 + 1/6.
Trong khi đó (1/4 + 1/5 + 1/6) > 3/5
=>S > 3/5 (1)
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)
=> S < 4/5 (2)
Từ (1) và (2) => 3/5 <S<4/5
Cho S = 1/31+1/32+1/33+.......+1/60.Chứng minh 3/5 < S < 4/
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)
Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ; (1/51 + 1/52+...+1/59+1/60) > 1/6
S > 1/4 + 1/5 + 1/6.
Trong khi đó (1/4 + 1/5 + 1/6) > 3/5
=>S > 3/5 (1)
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)
=> S < 4/5 (2)
Từ (1) và (2) => 3/5 <S<4/5 Chúc bạn học tốt !
cho s= 1/31+1/32+1/33+.....+1/60 chứng tỏ s>3/5
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)
Tương tự ta có : (1/41 + 1/42 + ...+ 1/50) > 1/5 ; (1/51 + 1/52+...+1/59+1/60) > 1/6
S > 1/4 + 1/5 + 1/6.
Mà khi đó ta thấy: (1/4 + 1/5 + 1/6) > 3/5
=>S > 3/5 (1)
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Do : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)
=> S < 4/5 (2)
Từ (1) và (2) => 3/5 <S<4/5
Cho S = 1/31+1/32+1/33+..............+1/60. CMR: 3/5 < S < 4/5
Cho S=1/31+1/32+1/33+.........+1/60. CMR:3/5<S<4/5
Lời giải:
$S=(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40})+(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50})+(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60})$
$> \frac{10}{40}+\frac{10}{50}+\frac{10}{60}=\frac{37}{60}> \frac{36}{60}=\frac{3}{5}$
Mặt khác:
$S=(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40})+(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50})+(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60})$
$< \frac{10}{30}+\frac{10}{40}+\frac{1}{50}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}$
cho S=1/31+1/32+1/33+...+1/60 chung minh 3/5 < S < 4/5
S = (1 / 31 + ... + 1 / 40) + (1 / 41 + ... + 1/ 50) + (1 / 51 + ... + 1 / 60) <
10 / 31 + 10 / 41 + 10 / 51 < 10 / 30 + 10 / 40 + 10 / 50 = 1 / 3 + 1 / 4 + 1 / 5 =
7 / 12 + 1 / 5 < 3 / 5 + 1 / 5 = 4 / 5
Tương tự:
S > 10 / 40 + 10 / 50 + 10 / 60 = 1 / 4 + 1 / 5 + 1 / 6 = 5 / 12 + 1 / 5 > 2 / 5 + 1 / 5 = 3 / 5
=> 3 / 5 < S < 4 / 5
Cho S=1/31+1/32+1/33+...+1/59+1/60 Chứng minh 3/5<S<4/5
Cho S=1/31+1/32+1/33+.........+1/59+1/60. C/m 3/5<S<4/5
Cho S= 1/31+1/32+1/33+...+1/60
CMR:3/5<S<4/5