cho a/b là phân số tối giản. chứng minh: 2a/a+2b
cho a/b là phân số tối giản.
Chứng minh: 2a/2b+a là phân số tối giản
1) Trướt hết mình xin ký hiệu lại:
a/b tối giản <=> (a;b)=1 tức là ước chung lớn nhất của a, b là 1
2) Ta sẽ chứng minh:
Nếu (a;b)=1 thì (b;a-b)=1 (*)
Bằng phản chứng: giả sử rằng (b;a-b)=k (k>1) khi đó ta có thể viết
b = k.u (u nguyên) (**)
a-b = k.v (v nguyên) (***)
Từ (**)(***) suy ra a = k(u+v) và do đó (a;b) = (k(u+v); ku) = k >1 là trái giả thiết.
Vậy (*) đã được chứng minh.
3) a/b tối giản => a/b -1 = (a-b)/b tối giản (theo (*))
bằng quy nạp sẽ chứng minh được a/b - n tối giản. (đpcm)
Cho phân số a/b là phân số chưa tối giản chứng minh rằng : 2a/(a - 2b) là phân số chưa tối giản
Lời giải:
Vì $\frac{a}{b}$ là phân số chưa tối giản nên $a,b$ còn có thể chia hết cho chung một số lớn hơn $1$.
Gọi số đó là $d$.
Ta có: $a\vdots d; b\vdots d\Rightarrow 2a\vdots a; a-2b\vdots d$
$\Rightarrow \frac{2a}{a-2b}$ là phân số không tối giản.
Cho phân số a/b là phân số chưa tối giản chứng minh rằng : 2a/(a - 2b) là phân số chưa tối giản
Cho a/b là phân số tối giản. Chứng minh rằng phân số sau chưa tối giản: 2a/a-2b
Chứng minh rằng 3n-2 trên 4n-3 là phân số tối giản
Cho a trên b là một phân số chưa tối giản. Chứng minh rằng các phân sau chưa tối giản
a) a trên a-b
b) 2a trên a-2b
Cho phân số a/b là phân số chưa tối giản chứng minh rằng : 2a/(a - 2b) là phân số chưa tối giản
Ai đó giúp mình với!!!
Ta có: a/b chưa tối giản.Gọi (a;b)=d (d #1)
=>a chia hết cho d;b chia hết cho d
=>2a chia hết cho d; 2d chia hết cho d
=>2a chia hết cho d; (a-2b) chia hết cho d
=>d thuộc ƯC(2a;a-2b)
Mà d#1
=>(2a;a-2b)#1
=>2a/a-2b chưa tối giản (đpcm)
Cho phân số a/b là phân số chưa tối giản chứng minh rằng : 2a/(a - 2b) là phân số chưa tối giản
Ai đó giúp mình với!!!
Cho phân số a/b chưa tối giản chứng minh rằng các phân số sau chưa tối giản:
a/ a/a-b
b/ 2a/a-2b
Do \(\frac{a}{b}\) là một phân số chưa tối giản nên ta có thể đặt \(\hept{\begin{cases}a=md\\b=nd\end{cases}}\left[d=\left(a;b\right);\left(m;n\right)=1\right]\)
Khi đó ta có:
a) \(\frac{a}{a-b}=\frac{md}{md-nd}=\frac{md}{\left(m-n\right)d}\) chưa là phân số tối giản (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)
b) \(\frac{2a}{a-2b}=\frac{2md}{md-2nd}=\frac{2md}{\left(m-2n\right)d}\) chưa là phân số tối giản (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)
cho \(\frac{a}{b}\)là 1 phân số chưa tối giản. Chứng minh rằng phân số sau chưa tối giản:
\(\frac{2a}{a-2b}\)
\(\frac{a}{b}\) là phân số chưa tối giản
\(\Leftrightarrow\hept{\begin{cases}a=k.a_1\\b=k.b_1\end{cases}}\) \(\left[ƯCLN\left(a;b\right)=k;ƯCLN\left(a_1;b_1\right)=1\right]\)
\(\frac{2a}{a-2b}=\frac{2.k.a_1}{k.a_1-2.k.b_1}=\frac{2k.a_1}{k\left(a_1-2.b_1\right)}\) chưa tối giản
=> đpcm
\(\text{Vì }\frac{a}{b}\text{ tối giảm ( giả thiết ) nên ta đặt}\hept{\begin{cases}a=md\\b=nd\end{cases}}\left(\text{Với }d=\left(a;b\right);\left(m;n\right)=1\right)\)
\(\text{Nên ta có: }\frac{2a}{a-2b}=\frac{md}{md-2nd}=\frac{md}{d\left(m-2n\right)}\)
\(\text{Vậy phân số }\frac{2a}{a-2b}\text{ chưa tối giảm (vì nó còn có thể chia cho d)}\)