Chứng minh rằng 10n+ 18n-28 chia hết cho 27
Chứng minh rằng 10^n + 18n - 28 chia hết cho 27
C1: 10^n + 18n - 28 = (10^n - 9n -1) + (27n - 27)
Ta có: 27n - 27 chia hết cho 27 (1)
10n - 9n - 1 = [( 9...9 + 1) - 9n - 1] = 9...9 - 9n = 9 (1...1 - n) chia hết cho 27 (2)
Vì 9 chia hết cho 9 và 1...1 - n chia hết cho 3. Do 1...1 - n là một số có tổng các chữ số chia hết cho 3 và từ (1) và (2) => ( 10^n+18n-28 ) chia hết cho 27.
Vậy ( 10^n+18n-28 ) chia hết cho 27.(đpcm)
C2: *Với n=1, ta có: 10 + 18 - 28 = 0 chia hết cho 27.
Giả sử n=k, ta có: 10^k + 18k - 28 chia hết cho 27.
=> 10^k + 18k - 28 = 27m (m là số nguyên)
=> 10k = 27m -18k + 28 (1)
*Với n=k+1, ta có: 10^k+1 + 18(k+1) - 28 = 10.10^k + 18k - 10 (2)
Thay (1) vào (2), ta được:
10^k+1 + 18(k+1) - 28 = 10 (27m - 18k + 28) + 18k - 10 = 270m - 162k + 270 chia hết cho 27.
Vậy ( 10^n+18n-28 ) chia hết cho 27 với n thuộc N*.(đpcm
Chứng minh rằng: 10n+18n-28 chia hết cho 27 với n thuộc N
Ta có: 10^n + 18n - 28 = (10^n - 1) + 18n-27 = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n)-27 (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3
=> A chia hết cho 3
=> 9.A chia hết cho 27
=>9.A-27 chia hết cho 27
=>10^n + 18n -28 chia hết cho 27
=>ĐPCM
Chứng minh rằng:
a)10^28 + 8 chia hết cho 72
b)8^8+2^20 chia hết cho 17
c)10^n+18n+1chia hết cho 27
d)10^n +72n -1 chia hết cho 81
d) \(10^n+72n-1\)\(=100...0-1+72n\)
=\(999...9-9n+81n\)
n chữ số 9
=\(9.\left(111...1-n\right)+81n\)
VÌ 1 số và tổng các chữ số có cùng số dư trong phép chia cho 9 => 111...1 - n chia hết 9
mà 81n chia hết 9 => 10n + 72n -1 chia hết 9
b) \(10^n+18n-1\)
<=> \(100..0+\left(27n-9n\right)-1\)chia hết \(27\)
n
<=> \(\left(100...0-1-9n\right)+27n\)chia hết \(27\)
n
<=> \(\left(99...9-9n\right)+27n\)chia hết \(27\)
n
<=> \(9.\left(11..1-n\right)+27n\)chia hết \(27\)
<=> \(9.9k+27n\)chia hết \(27\)
<=> \(81k+27n\)chia hết \(27\)
a) \(10^{28}+8\)chia hết cho 72
\(\Rightarrow10^{28}:9\)dư 1
\(\Rightarrow8:9\)dư 8
\(\Rightarrow1+8=9\)chia hết cho 9
\(\Rightarrow10^{28}+8\)chia hết cho 9 ( 1 )
\(10^{28}\)chia hết cho 8 ( vì 3 sớ tận cùng là 000 chia hết cho 8 )
8 chia hết cho 8
\(\Rightarrow10^{28}+8\)chia hết cho 8 ( 2 )
Từ ( 1 ) và ( 2 ) kết hợp với UCLN ( 8 ; 9 ) = 1 => ĐPCM
b) \(8^8+2^{20}=\left(2^3\right)^8+2^{20}=2^{24}+2^{20}=2^{20}.\left(2^4+1\right)=2^{20}.17\)chia hết cho 7 => ĐPCM
c) Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
d
Chứng minh rằng:
b) ( n^4 - 10n^2 + 9) chia hết cho 384(n lẻ thuộc Z)
c) ( 10^n + 18n - 28) chia hết cho 27 ( n thuộc N)
\(b,n^4-10n^2+9=n^4-n^2-9n^2+9=\left(n^2-1\right)\left(n^2-9\right)\\ =\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)
Vì \(n\in Z\) và n lẻ nên \(n=2k+1\left(k\in Z\right)\)
\(\Leftrightarrow\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\\ =2k.\left(2k+2\right).\left(2k-2\right).\left(2k+4\right)\\ =16k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)
Vì \(k,k+1,k-1,k+2\) là 4 số nguyên liên tiếp nên chia hết cho \(1.2.3.4=24\)
Do đó \(16k\left(k+1\right)\left(k-1\right)\left(k+2\right)⋮24.16=384\)
\(c,\forall n=1\Leftrightarrow10+18-28=0⋮27\\ \text{G/s }n=k\Leftrightarrow\left(10^k+18k-28\right)⋮27\\ \Leftrightarrow10^k+18k-28=27m\left(m\in N\right)\\ \Leftrightarrow10^k=27m-18k+28\\ \forall n=k+1\Leftrightarrow10^{k+1}+18\left(k+1\right)-28\\ =10.10^k+18k-10\\ =10\left(27m-18k+28\right)+18k-10=270m-162k+270⋮27\)
Theo PP quy nạp ta đc đpcm
Chứng minh rằng:
a) ( n^5 - n) chia hết cho 30
b) ( n^4 - 10n^2 + 9) chia hết cho 384(n lẻ thuộc Z)
c) ( 10^n + 18n - 28) chia hết cho 27 ( n thuộc N)
Chứng minh rằng:
a) ( n^5 - n) chia hết cho 30
b) ( n^4 - 10n^2 + 9) chia hết cho 384(n lẻ thuộc Z)
c) ( 10^n + 18n - 28) chia hết cho 27 ( n thuộc N)
Chứng minh rằng 10^n+18n-1 chia hết cho 27?
Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm).
ban vào câu hỏi tương tự
Ta có:
10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) = 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3.
Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3
=> 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3
=> 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
Chứng minh rằng 10^n+18n-1 chia hết cho 27?
Bài 1:Chứng minh rằng 10^n+18n-1 chia hết cho 27