Tim cac so nguyen duong x,y biet |x-2y+1|.|x+4y+3| = 20
Tim cac so nguyen duong x;y biet: |x-2y+1|.|x+4y+3|=20
de ma suy ra 1 trong 2 ve la uoc cua 20
chi la uoc duong thoi vi cogia tri tuyet doi ma
tim cac so nguyen duong x;y biet |x-2y +1|.|x+4y+3| =20
tim cac so nguyen duong x,y biet |x-2y+1| |x+4y+3|=20
tim cac so xy nguyen duong biet /x-2y+1/*/x+4y+3/=20
tim cac so nguyen duong(x,y) de gia tri truyet doi cua x-2y+1 * gia tri tuyet doi cua x+4y+3 =20
Tim cap so x;y nguyen duong biet :
/ x - 2y + 1/ . /x + 4y + 3/ = 20
lam nhanh cho minh nhe cac ban , thanks
tim cac so nguyen duong x,y biet
1/2x+1/2y+1/xy=1/2
\(\dfrac{1}{2x}+\dfrac{1}{2y}+\dfrac{1}{xy}=\dfrac{1}{2}\)
\(\dfrac{y}{2xy}+\dfrac{x}{2xy}+\dfrac{2}{2xy}=\dfrac{xy}{2xy}\)
=> x + y + 2 = xy
x + y - xy = -2
x.( 1 - y ) + y = -2
x.( 1 - y ) - ( 1 - y ) = -2 - 1
( 1 - y ).( x - 1 ) = -3
- ( y - 1 ).( x - 1) = -3
=> ( y - 1 ).( x - 1 ) = 3
=> ( y - 1 ) ; ( x - 1 ) \(\in\) Ư( 3 ) = { 1; -1; 3; -3 }
Ta có bảng sau
y - 1 | 1 | -1 | 3 | -3 |
y | 2 | 0 | 4 | -2 |
x - 1 | 3 | -3 | 1 | -1 |
x | 4 | -2 | 2 | 0 |
Vậy ( x ; y ) \(\in\) { ( 4 ; 2 ); ( -2 ; 0 ); ( 2; 4 ); ( 0; -2 ) }
Tim cac so nguyen x va y, biet rang:
a) (x-2)(2y+1)=8; b) (8-x)(4y+1)=20
giup mk nha cac bn
(x-2)(2y+1)=8
=> (x-2)(2y+1)=8.1=1.8=(-1)(-8)=(-8)(-1)
ta có bảng sau
x-2 | 8 | 1 | -1 | -8 |
x | 10 | 3 | 1 | -6 |
2y+1 | 1 | 8 | -8 | -1 |
y | 0 | 3.5 | -4.5 | -1 |
vì x,y thuộc Z nên x\(\in\){10;3;1;-6} y\(\in\){0;-1}
vậy...
(8-x)(4y+1)=20
=> (8-x)(4y+1)=20.1=1.20=(-1)(-20)=(-20)(-1)
ta có bảng sau
8-x | 20 | 1 | -20 | -1 |
x | -12 | 7 | 28 | 9 |
4y+1 | 1 | 20 | -1 | -20 |
y | 0 | 4.75 | -0.5 | -5.25 |
vì x;y thuộc Z nên...
vậy...
tim cac so nguyen x,y biet x^2-(y-3)x-2y-1=0
ta có : x2 - (y-3)x - 2y - 1 =0 <=> x2 - xy +3x -2y -1 =0 <=> x2 +3x -1 = xy +2y
<=> x2 + 3x -1 =y(x+2) xét x=-2 không phải là nghiệm ( đoạn này để khẳng định \(x+2\ne0\)nhằm đưa x+2 xuống mẫu)
<=> \(\frac{x^2+3x-1}{x+2}=y\)
Vì \(y\in Z\) nên \(\frac{x^2+3x-1}{x+2}=y\) hay \(x^2+3x-1⋮x+2\) <=> \(\left(x+2\right).\left(x+1\right)-3⋮x+2\)
hay \(-3⋮x+2\)(vì\(\left(x+2\right).\left(x+1\right)⋮x+2\)
=>\(x+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\) <=> \(x\in\left\{-5;-3;-1;1\right\}\)
=> x=-5 =>y= -3
x=-3 =>y=1
x=-1 =>y-3
x=1 =>y=1