CTR A = 51^n + 47^102 ( n thuộc N ) chia hết cho 10
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho A = 51^n + 47^102 ( n thuộc N )
Chứng minh rằng A chia hết cho 10
Ta có:
\(51^n\equiv1\left(mod10\right)\)
\(47^2\equiv-1\left(mod10\right)\)
\(\Rightarrow47^{102}\equiv-1\left(mod10\right)\)
\(\Rightarrow A=51^n+47^{102}\equiv1+\left(-1\right)\left(mod10\right)\)
\(\Rightarrow A=51^n+47^{102}⋮10\left(đpcm\right)\)
A = 51n + 47102
A = (...1) + 47100.472
A = (...1) + (474)25.(...9)
A = (...1) + (...1)25.9
A = (...1) + (...1).9
A = (...1) + (...9)
\(A=\left(...0\right)⋮10\left(đpcm\right)\)
Cho A = 51n + 47102 (n thuộc N )Chứng minh rằng A chia hết cho 10
Chứng tỏ rằng A=51n+47102(n thuộc N) chia hết cho 10
Chứng minh rằng A = 51n + 47102 [n thuộc N] chia hết cho 10
Chứng minh rằng :
A = 51n + 47102 [ n thuộc N ] chia hết cho 10
ta có 47102 thì ta so sánh chữ số cuối thì thành 72 thì sẽ có tận cùng là 9 (72 =49)
mà 51n bao giờ cũng có tận cùng là 1
=>......1+........9= ......10 chia hết cho 10
Ta có :
\(51^n\equiv1\left(mod10\right)\)
\(47^2\equiv-1\left(mod10\right)\)
\(\Rightarrow47^{102}\equiv-1\left(mod10\right)\)
\(\Rightarrow A=51^n+47^{102}\equiv1+\left(-1\right)\left(mod10\right)\)
\(\Rightarrow A=51^n+47^{102}⋮10\left(đpcm\right)\)
CMR tổng 5 số tự nhiên liên tiếp chia hết cho 5
CMR n2+n chia hết cho 2 với nn thuộc N
CMR a2b + b2a chia hết cho 2 với a,b thuộc N
CMR 51n+47102chia hết cho 10 (n thuộc N)
4. chứng minh rằng
a) CMR tổng 5 số tự nhiên chia hết cho 5
b)CMR n2+n chia hết cho 2 với n thuộc N
c) CMR a2b + b2a chia hết cho 2 với a,b thuộc N
d) CMR 51n + 47102 chia hết cho 10 (n thuộc N)
CMR: chứng minh rằng
a) Gọi 5 số tự nhiên đó là a; a+1; a+2; a+3;a+4
Tổng 5 số đó là a + a+1 + a+2 + a+3 + a+4
= (a+a+a+a+a) + (1+2+3+4)
= 5a + 10
= 5(a+2) chia hết cho 5
Vậy tổng của 5 số tự nhiên chia hết cho 5
a, cmr n^2+n chia hết cho 2 với n thuộc N
b,cmr a^2b+ b^2a chia hết cho 2 với a.b thuộc N
c, cmr51^n+47^102 chia hết cho 10 n thuộc N
a, \(n^2+n=n\left(n+1\right)\)
Vì n(n+1) là tích 2 số tự nhiên liên tiếp nên \(n\left(n+1\right)⋮2\)
Vậy ...
b, \(a^2b+b^2a=ab\left(a+b\right)\)
Nếu a chẵn, b lẻ thì \(ab\left(a+b\right)⋮2\)
Nếu a lẻ, b chẵn thì \(ab\left(a+b\right)⋮2\)
Nếu a,b cùng chẵn thì \(ab⋮2\Rightarrow ab\left(a+b\right)⋮2\)
Nếu a,b cùng lẻ thì \(a+b⋮2\Rightarrow ab\left(a+b\right)⋮2\)
c, \(51^n+47^{102}=\overline{...1}+47^{100}.47^2=\overline{...1}+\left(47^4\right)^{25}.47^2=\overline{...1}+\overline{...1}^{25}\cdot.\overline{...9}=\overline{...1}+\overline{...9}=\overline{...0}⋮10\)
Cho A = \(51^n+47^{102}\) (n \(\in\) N) . Chứng minh A chia hết cho 10
Ta có:
\(A=51^n+47^{102}\)
\(\Rightarrow A=\overline{...1}+47^{100}.47^2\)
\(\Rightarrow A=\overline{...1}+\left(47^4\right)^{25}.\left(\overline{...9}\right)\)
\(\Rightarrow A=\overline{...1}+\left(\overline{...1}\right)^{25}.\left(\overline{...9}\right)\)
\(\Rightarrow A=\overline{...1}+\left(\overline{...1}\right).\left(\overline{...9}\right)\)
\(\Rightarrow A=\overline{...1}+\overline{...9}\)
\(\Rightarrow A=\overline{...0}\)
Vì \(\overline{....0}\text{⋮}10\) nên \(A\text{⋮}10\)
Vậy \(A\text{⋮}10\left(đpcm\right)\)