Những câu hỏi liên quan
TO
Xem chi tiết
NM
Xem chi tiết
MN
Xem chi tiết
H24
18 tháng 5 2016 lúc 20:16

GTNN là 4

Bình luận (0)
HP
18 tháng 5 2016 lúc 20:36

x-y=2

=>x=y+2

Thay x=y+2 vào Q,ta đc:

\(Q=\left(y+2\right).y+4=y^2+2y+4=y^2+2y+1+3\)

\(Q=y^2+y+y+1+3=y\left(y+1\right)+\left(y+1\right)+3=\left(y+1\right)\left(y+1\right)+3=\left(y+1\right)^2+3\)

\(\left(y+1\right)^2\ge0\Rightarrow\left(y+1\right)^2+3\ge3\)

=>GTNN của Q là 3

Dấu "=" xảy ra <=> y+1=0<=>y=-1

Vậy.............

Bình luận (0)
H24
18 tháng 5 2016 lúc 20:38

x-y=2=> x=2+y

Q=xy+4=(2+y)y+4=2y+y^2+4

ta có y^2>/0=> 2y+y^2>/0=> 2y+y^2+4>/4

vậy Min Q là 4

Bình luận (0)
ND
Xem chi tiết
MT
6 tháng 5 2016 lúc 20:45

P(x)=4x^2+4x-3=4x2+2x+2x+1-4

=2x.(2x+1)+(2x+1)-4

=(2x+1)(2x+1)-4

=(2x+1)2-4 \(\ge\)-4

Vậy GTNN của P(x) là -4 tại x=-1/2

Bình luận (0)
L6
Xem chi tiết
TP
11 tháng 7 2018 lúc 7:29

bài này học từ mấu giáo rồi nhé , sao ghi là lớp 8 vậy

Bình luận (0)
OO
11 tháng 7 2018 lúc 7:29

nói xàm lớp 8 chứ

Bình luận (0)
TP
11 tháng 7 2018 lúc 7:34

mẫu giáo t làm rồi. liếc phát biết đáp án

  , rút 3 ra , thêm bớt + hẳng đẳng thức là ra

làm bẩn tay lắm

Bình luận (0)
TV
Xem chi tiết
HN
Xem chi tiết
MP
16 tháng 8 2017 lúc 16:55

ta có : \(A=x^2-2x+y^2-4y+6=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(A=\left(x-1\right)^2+\left(y-2\right)^2+1\)

ta có : \(\left(x-1\right)^2\ge0\) với mọi \(x\)\(\left(y-2\right)^2\ge0\) với mọi \(y\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\) với mọi \(x;y\)

\(\Rightarrow\) GTNN của \(A\) là 1 khi \(\left\{{}\begin{matrix}x-1=0\\y-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

vậy giá trị nhỏ nhất của \(A\) là 1 khi \(x=1;y=2\)

Bình luận (0)
H24
16 tháng 8 2017 lúc 16:55

A = \(x^2-2x+y^2-4y+6=x^2-2x+1+y^2-4y+4+1=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\)

Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Vậy GTNN của A là 1 khi x = 1 và y = 2

Bình luận (0)
DH
16 tháng 8 2017 lúc 16:55

\(A=x^2-2x+y^2-4y+6\)

\(A=x^2-x-x+1+y^2-2y-2y+4+1\)

\(A=\left(x-1\right)^2+\left(y-2\right)^2+1\)

Với mọi giá trị của \(x;y\in R\) ta có:

\(\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\)

hay \(A\ge1\) với mọi giá trị của \(x;y\in R\)

Để \(A=1\) thì \(\left(x-1\right)^2+\left(y-2\right)^2+1=1\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Vậy.....................

Chúc bạn học tốt!!!

Bình luận (0)
NM
Xem chi tiết
VG
6 tháng 8 2017 lúc 20:22

ta có: F= 3.x^2 +4x+5

<=> F=3(x^2 +2.x.(2/3) +4/9) -4/3 +5

<=>F=3.(x+2/3)^2 +11/3

Mà 3.(x+2/3)^2 \(\ge\) 0 =>F\(\ge\)11/3

Dấu '=' xảy ra khi x+2/3=0 <=>x=-2/3

Vậy GTNN của F là 11/3 khi x=-2/3

Bình luận (0)
HH
Xem chi tiết
YN
3 tháng 1 2020 lúc 14:45

Điều kiện \(x\ne\frac{-2}{3},x\in Z\)

M=\(\frac{2019x-2020}{3x+2}=\frac{673\left(3x+2\right)-3366}{3x+2}=673-\frac{3366}{3x+2}\)

Với \(\hept{\begin{cases}x\in Z\\3x+2>0\end{cases}}\Rightarrow\hept{\begin{cases}x\in Z\\x>\frac{-2}{3}\end{cases}}\Rightarrow\frac{3366}{3x+2}>0\Rightarrow M>0\)

Với \(\hept{\begin{cases}x\in Z\\3x+2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x\in Z\\x< \frac{-2}{3}\end{cases}}\)

\(\Rightarrow\)Phân số \(\frac{3366}{3x+2}\)nhỏ nhất\(\Leftrightarrow\)mẫu nguyên âm lớn nhất

                                                        \(\Leftrightarrow3x+2=-1\) 

                                                       \(\Leftrightarrow\)\(3x=-3\)

                                                      \(\Leftrightarrow x=-1\)(Thảo mãn điều kiện)

Với x=-1 thì M=4039

Vậy Min M=4039\(\Leftrightarrow x=-1\)

Bình luận (0)
 Khách vãng lai đã xóa