Những câu hỏi liên quan
LV
Xem chi tiết
NN
17 tháng 1 2016 lúc 6:15

\(S=1+\frac{1}{2}+\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{101}{2}\)

\(S=1+\frac{1+2+3+4+...+101}{2}\)

\(S=1+\frac{10201}{2}=...\)

tick cho mink nha!

Bình luận (0)
NK
Xem chi tiết
99
25 tháng 6 2018 lúc 8:59

A = 1 + \(\frac{1}{2}\left(1+2\right)\)\(\frac{1}{3}\left(1+2+3\right)\)+ .... + \(\frac{1}{100}\left(1+2+3+...+100\right)\)

A = \(1+\frac{1}{2}\cdot\frac{2.3}{2}+\frac{1}{3}\cdot\frac{3.4}{2}+...+\frac{1}{100}\cdot\frac{100.101}{2}\)

A = \(\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{101}{2}\)

A = \(\frac{2+3+4+...+101}{2}\)

A = \(\frac{\left(101+2\right).100}{2}\div2\)

A  = \(5150\div2=2575\)

Bình luận (0)
BQ
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
OO
7 tháng 4 2016 lúc 5:07

mk bó tay sorry

456547

Bình luận (0)
PT
9 tháng 1 2021 lúc 23:10

Bạn nhìn thì cũng không quá khó để nhận ra quy luật trong S

\(\frac{1}{1},\)\(\frac{1+2}{2},\)\(\frac{1+2+3}{3},\)\(\frac{1+2+3+4}{4},\)..., \(\frac{1+2+...+100}{100},\)

Công thức tính tổng \(1+2+3+..+n\)(với \(n\)là số nguyên dương) là \(\frac{n\cdot\left(n+1\right)}{2}\)

Vì vậy mỗi số hạng trong \(S\)có thể rút gọn thành \(\frac{1+2+3+...+n}{n}=\frac{\frac{n\left(n+1\right)}{2}}{n}=\frac{n+1}{2}\)

Do đó

 \(S=\frac{\left(1+1\right)}{2}+\frac{\left(2+1\right)}{2}+\frac{\left(3+1\right)}{2}+..+\frac{\left(100+1\right)}{2}=\frac{1}{2}\left(2+3+4+..+101\right)\)

\(S=\frac{1}{2}\left(\frac{101\cdot102}{2}-1\right)=2575\)

Chúc bạn học tốt!
(P/S : giải thích dòng cuối : Tổng từ 2 tới 101? Lấy tổng từ 1 tới 101 rồi trừ đi 1 nếu không nhớ cách làm của Gauss nha, không thì cứ nhớ câu này "Dĩ đầu cộng vĩ, chiết bán nhân chi" (lấy đầu cộng cuối, chia 2, nhân số số hạng))

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
Xem chi tiết
DV
8 tháng 3 2016 lúc 22:22

\(S=1.\left(2-1\right)+2.\left(3-1\right)+...+100.\left(101-1\right)\)

   \(=1.2-1.1+2.3-1.2+...+100.101-1.100\)

   \(=\left(1.2+2.3+...+100.101\right)+\left(1+2+...+100\right)\)

   Áp dụng 1.2 + 2.3 + ... + n(n + 1) = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\) ta có 

\(S=\frac{100.101.102}{3}+\frac{100.101}{2}=343400+5050=\)348450

Bình luận (1)
NN
8 tháng 3 2016 lúc 22:22

http://diendantoanhoc.net/topic/90149-1222321002/

Bình luận (0)
H24
8 tháng 3 2016 lúc 22:26

cảm ơn bn ĐINH TUẤN VIỆT nhìu

Bình luận (0)
VK
Xem chi tiết