So sánh:
A=\(\frac{2015^{2013}+1}{2015^{2014}+1}\)
B=\(\frac{2015^{2015}+1}{2015^{2016}+1}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1) CMR : A=(n+2015)(n+2016) + n2 + n chia hết cho 2 với n ϵ N
2) So sánh :
P = \(\frac{2013}{2014^{2013}}+\frac{2014}{2015^{2014}}+\frac{2015}{2016^{2015}}+\frac{2016}{2017^{2016}}\) và
Q = \(\frac{2014}{2017^{2016}}+\frac{2013}{2016^{2015}}+\frac{2016}{2015^{2014}}+\frac{2015}{2014^{2013}}\)
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)
SO SÁNH
A, A=\(\frac{2015^{2015}+1}{2015^{2014}+1}VÀB=\frac{2015^{2014}+1}{2015^{2013}+1}\)
B, B= \(\frac{2010^{2015}+1}{2010^{2016}+1}VÀC=\frac{2010^{2014}+1}{2010^{2015}+1}\)
\(B-1=\frac{2015^{2014}+1}{2015^{2013}+1}-1=\frac{2015^{2015}+2015}{2015^{2014}+2015}-1=\frac{2015^{2015}-2015^{2014}}{2015^{2014}+2015}\)
\(A-1=\frac{2015^{2015}+1}{2015^{2014}+1}-1=\frac{2015^{ }^{2015}-2015^{2014}}{2015^{2014}+1}\)
=> A- 1 > B- 1 => A>B
Câu b) Làm tương tự bạn nhé
So sánh : \(A=\frac{2015^{2016}+1}{2015^{2015}+1}\) và \(B=\frac{2014^{2015}+1}{2014^{2014}+1}\)
A = \(\frac{2015^{2016}+1}{2015^{2015}+1}=\frac{2015^{2015}+1}{2015^{2015}+1}+\frac{2015}{2015^{2015}+1}=1+\frac{2015}{2015^{2015}+1}\)
B = \(\frac{2014^{2015}+1}{2014^{2014}+1}=\frac{2014^{2014}+1}{2014^{2014}+1}+\frac{2014}{2014^{2014}+1}=1+\frac{2014}{2014^{2014}+1}\)
Rồi bạn tự so sánh nha
SO SÁNH
ạ, A = \(A=\frac{2015^{2015}+1}{2015^{2014}+1}VÀB=\frac{2015^{2014}+1}{2015^{2013}+1}\)
So sánh:
\(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}\)và\(\frac{2013+2014+2015}{2014+2015+2016}\)
a) So sánh \(\frac{2013}{2015}\) và \(\frac{2014}{2016}\)
b) So sánh \(\frac{2013+2014}{2014+2015}\) và \(\frac{2013}{2014}+\frac{2014}{2015}\)
a)\(\frac{2013}{2015}< \frac{2014}{2016}\)
b)\(\frac{2013+2014}{2014+2015}< \frac{2013}{2014}+\frac{2014}{2015}\)
ta có tính chất \(\frac{a}{b}\)>1 suy ra \(\frac{a.m}{b.m}\).........
So sánh:
a) A=9^10 và B= ( 8^9+7^9+6^9+...+2^9+1^9)
b) P= 2013/2014 + 2014/2015 + 2015/2016 với Q= 2013+2014+2015 / 2014+2015+2016
So sánh A=\(\frac{2014^{2015}+1}{2014^{2015}+1}\) va B=\(\frac{2014^{2014}+1}{2014^{2013}+1}\)
Ta có :
\(\frac{2014^{2015}+1}{2014^{2015}+1}\)\(=1\)
\(\frac{2014^{2014}+1}{2014^{2013}+1}\)\(>1\)
\(\Rightarrow A< B\)
Vậy \(A< B\)
so sánh A=2013/2014 + 2014/2015 + 2015/2016 và B=2013+2014+2015/2014+2015+2016
A = \(\frac{2013}{2014}+\frac{2014}{2015}>\frac{1}{2}+\frac{1}{2}=1\)
\(B=\frac{2013+2014+2015}{2014+2015+2016}<1\)
\(Vậy:A>B\)
Đúng nha Nguyễn Bình Minh
so sánh:
\(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}\) và\(B=\) \(\frac{2013+2014+2015}{2014+2015+2016}\)
\(B=\frac{2013}{2014+2015+2016}+\frac{2014}{2014+2015+2016}+\frac{2015}{2014+2015+2016}\)
Ta có: \(\frac{2013}{2014}>\frac{2013}{2014+2015+2016}\)
\(\frac{2014}{2015}>\frac{2014}{2014+2015+2016}\)
\(\frac{2015}{2016}>\frac{2015}{2014+2015+2016}\)
\(\Rightarrow\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}>\frac{2013+2014+2015}{2014+2015+2016}\)
Vậy: \(A>B\)