n là một số ko chia hết cho 3
CMR:n^2 chia cho 3 dư 1
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
BÀI 1
CMR: MỘT SỐ CHÍNH PHƯƠNG HOẶC LÀ CHIA HẾT CHO 3 HOẶC LÀ CHIA 3 DƯ 1
BÀI 2
CMR: MỘT SỐ CHÍNH PHƯƠNG KHI CHIA CHO 4 CÓ SỐ DƯ KO THỂ NÀO LÀ 2 HOẶC 3.
Bài 1:
Do một số chia cho 3 có số dư là 0, 1, 2 nên đặt các số là 3x, 3x+1 và 3x+2.
Ta có: (3x)2 = 9x2 chia hết cho 3
(3x + 1)2 = 9x2 + 6x +1 chia 3 dư 1
(3x + 2)2 = 9x2 + 12x + 4 chia 3 dư 1
Vậy một số chính phương chia cho 3 hoặc chia hết hoặc dư 1.
Bài 2 : Tương tự
Bài 1:
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2.
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên)
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1.
Vậy số chính phương chia cho 3 dư 0 hoặc 1
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé.
Bài 1 :Cho tổng A=12+15+21+x với x€N. Tìm điều kiện của x để A chia hết cho 3 , để A ko chia hết cho 3
Bài 2:Khi chia số tự nhiên a cho 24, ta được số dư là 10. Hỏi số a có chia hết cho 2 ko? Có chia hết cho 4 ko
Khi chia số a (a thuộc N ) cho 18 đc số dư là 10 . Hỏi số a có chia hết cho 2 ko ? có chhia hết cho 3 ko?có chia hết cho 5 ko ?
a sẽ có chia hết cho 2 vì số chia và số dư đều chia hết cho 2
Còn lại a ko chia hết cho 5 và 3 vì số chia hoặc số dư ko cùng chia hết cho 5 và 3
Cmr1 số chính phương khi chia 3 thì dư 0 hoặc 1
Theo các bạn mình giải bằng cách này dc ko
Đặt n là số tự nhiên ,n^2 là số chính phương
Ta có n (n^2-1)=(n-1)n (n+1)
Mà (n-1),n ,(n+1) là 3 số tự nhiên liên tiếp và tích 3 số tự nhiên liên tiếp chia hết cho 3
Suy ra n (n^2-1)=(n-1)n (n+1)chia hết cho 3
Suy ra n ( n^2-1)chia hết cho 3
Suy ra n chia hết cho 3 hoặc n^2 -1 chia hết cho 3
Suy ra n^2 chia 3 dư 0 hoặc n^2chia 3 dư 1
Mình ko bít mình làm. Đúng hay ko nữa
I don't now
or no I don't
..................
sorry
1.cho 4 số tự nhiên a ,b,c,d . a: 7 dư 6 , b : 7 dư 4 , c : 7 dư 3 , d chia 7 dư 2. chứng minh rằng ;
a+b-c chia hết cho 7 , a-b-d chia hết cho 7
2.chứng minh rằng : n . ( n+8) . (n +13 ) chia hết cho 3 ( n là số tự nhiên)
mình đăng mà ko có ai giải là sao , ko hiểu hôm nay wed bị hỏng à
chọn là một số ko chia hết cho 3.CMR \(n^2:3\)dư 1
vì số ko chia hết cho 3 có dạng 3k+1 và 3k+2
TH1:Với n =3k+1 ta có:(3k+1)2 =9k2 + 1
Vì 9 chia hết cho 3 => 9k2 chia hết cho 3
mà 1 chia 3 dư 1=>n2 chia 3 dư 1(đpcm)
TH2: Với n=3k+2 ta có :(3k+2)2 =9k2 +4
Vì 9 chia hết cho 3 => 9k2 chia hết cho 3
mà 4 chia 3 dư 1=> n^2 chia 3 dư 1(đpcm)
a ko chia hết cho 3 nên a có dạng 3k+1hoặc 3k+2
nếu có dang 3k+1 thì a^2 =6k^2+1(chia cho 3 dư 1)
nếu a có dạng 3k+2 thì a^2 =6k^2+4 chia 3 dư 1(do 6k^2:3mà4 chia 3 dư 1 )
vì số ko chia hết cho 3 có dạng 3k+1 và 3k+2
TH1:Với n =3k+1 ta có:(3k+1)2 =9k
2 + 1
Vì 9 chia hết cho 3 => 9k
2 chia hết cho 3
mà 1 chia 3 dư 1=>n
2 chia 3 dư 1(đpcm)
TH2: Với n=3k+2 ta có :(3k+2)2 =9k
2 +4
Vì 9 chia hết cho 3 => 9k
2 chia hết cho 3
mà 4 chia 3 dư 1=> n^2 chia 3 dư 1(đpcm)
42) a) Khi chia stn a cho 9,ta được số dư là 6.Hỏi số a có chia hết cho 3 không?
b) Khi chia stn a cho 12,ta được số dư là 9.Hỏi số a có chia hết cho 3 không? có chia hết cho 6 ko?
c) số 30.31.32.33.....40+111 có chia hết cho 37 không?
46)
a) Tích của 2 stn liên tiếp là 1 số chia hết cho 2
b) Với mọi n thuộc N , chứng tỏ rằng : n.(n+3) chia hết cho 2
c) với mọi n thuộc N ,chứng tỏ rằng :n^2+n+1 khong chia het cho 2
Bài 45 :
a ) Theo bài ra ta có :
a = 9.k + 6
a = 3.3.k + 3.2
\(\Rightarrow a⋮3\)
b ) Theo bài ra ta có :
a = 12.k + 9
a = 3.4.k + 3.3
\(\Rightarrow a⋮3\)
Vì : \(a⋮3\Rightarrow a⋮6\)
c ) Ta thấy :
30 x 31 x 32 x ...... x 40 + 111
= 37 x 30 x ....... x 40 + 37 x 3
\(\Rightarrow\left(30.31.32......40+111\right)⋮37\)
Bài 46 :
a ) số thứ nhất là n số thứ 2 là n+1
tích của chúng là
n(n+1)
nếu n = 2k ( tức n là số chẵn)
tích của chúng là
2k.(2k+1) thì rõ rảng số này chia hết cho 2 nên là sỗ chẵn
nếu n = 2k +1 ( tức n là số lẻ)
tích của chúng là
(2k+1)(2k+1+1) = (2k+1)(2k+2) = 2.(2k+1)(k+1) số này cũng chia hết cho 2 nên là số chẵn
Mà đã là số chẵn thì luôn chia hết cho 2 nên tích 2 stn liên tiếp luôn chia hết cho 2
b ) Nếu n là số lẻ thì : n + 3 là số chẵn
Mà : số lẻ nhân với số chẵn thì sẽ luôn chia hết cho 2
Nếu n là số chẵn thì :
n . ( n + 3 ) luôn chi hết cho 2
c ) Vì n ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là : 0 ; 2 ; 4 ; 6
Do đó n(n + 1 ) + 1 có tận cùng là : 1 ; 3 ; 7
Vì 1 ; 3 ; 7 không chia hết cho 2
Vậy n2 + n + 1 không chia hết cho 2
Bài 1:CMR với mọi q,p là số tự nhiên, thì:
a,105p+30q chia hết cho 5
b,105p+5q+1 chia cho 5 dư 1
Bài 2: CMR: (n2+n+1) ko chia hết cho 5 (n là số tự nhiên)
Bài 3:CMR trong hai số chẵn liên tiếp có một số chia hết cho 4.
a) Trong phép chia cho 2 có số dư là 0 hoặc 1.
Trong phép chia cho 4, 5, 6 số dư có thể là những số nào?
b) Dạng tổng quát của một số chia hết cho 2 là 2k , dạng tổng quát của một số chia hết cho 2 dư 1 là 2k + 1 (k là số tự nhiên).
Viết dạng tổng quát của một số chia hết cho 3, chia 3 dư 1, chia 3 dư 2.
c) Tổng quát a chia b dư r thì r có thể là số nào?
a) Số chia cho 4 có thể có dư là: 0; 1; 2; 3
Số chia cho 5 có thể có dư là: 0; 1; 2; 3; 4
Số chia cho 6 có thể có dư là: 0; 1; 2; 3; 4; 5
b) Dạng tổng quát của số chia hết cho 3 là: 3k
Dạng tổng quát của số chia hết cho 3 dư 1 là: 3k + 1
Dạng tổng quát của số chia hết cho 3 dư 2 là: 3k + 2
( Với k ∈ N)